Controlled delivery of antiangiogenic drug to human eye tissue using a MEMS device

Fatemeh Nazly Pirmoradi, Kevin Ou, John K. Jackson, Kevin Letchford, Jing Cui, Ki Tae Wolf, Florian Graber, Tom Zhao, Joanne A. Matsubara, Helen Burt, Mu Chiao, Liwei Lin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations


We demonstrate an implantable MEMS drug delivery device to conduct controlled and on-demand, ex vivo drug transport to human eye tissue. Remotely operated drug delivery to human post-mortem eyes was performed via a MEMS device. The developed curved packaging cover conforms to the eyeball thereby preventing the eye tissue from contacting the actuating membrane. By pulsed operation of the device, using an externally applied magnetic field, the drug released from the device accumulates in a cavity adjacent to the tissue. As such, docetaxel (DTX), an antiangiogenic drug, diffuses through the eye tissue, from sclera and choroid to retina. DTX uptake by sclera and choroid were measured to be 1.93±0.66 and 7.24±0.37 μg/g tissue, respectively, after two hours in pulsed operation mode (10s on/off cycles) at 23°C. During this period, a total amount of 192 ng DTX diffused into the exposed tissue. This MEMS device shows great potential for the treatment of ocular posterior segment diseases such as diabetic retinopathy by introducing a novel way of drug administration to the eye. © 2013 IEEE.
Original languageEnglish (US)
Title of host publication2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS)
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Number of pages4
ISBN (Print)9781467356558
StatePublished - Jan 2013
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was funded in part by the CollaborativeHealth Research Projects, Natural Science andEngineering Research Council of Canada, the CanadianInstitutes of Health Research, and an AcademicExcellence Alliance grant awarded by the KAUST Officeof Competitive Research Funds. Mu Chiao is supportedby the Canada Research Chairs Program. Authors wouldlike to thank Mr. Tom Brubaker and Ms. Kye Lee,undergraduate students in the Lin lab, for their assistance.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.


Dive into the research topics of 'Controlled delivery of antiangiogenic drug to human eye tissue using a MEMS device'. Together they form a unique fingerprint.

Cite this