Abstract
Recent unsupervised approaches to domain adaptation primarily focus on minimizing the gap between the source and the target domains through refining the feature generator, in order to learn a better alignment between the two domains. This minimization can be achieved via a domain classifier to detect target-domain features that are divergent from source-domain features. However, when optimizing via such domain-classification discrepancy, ambiguous target samples that are not smoothly distributed on the low-dimensional data manifold are often missed. To solve this issue, we propose a novel Contrastively Smoothed Class Alignment (CoSCA) model, that explicitly incorporates both intra- and inter-class domain discrepancy to better align ambiguous target samples with the source domain. CoSCA estimates the underlying label hypothesis of target samples, and simultaneously adapts their feature representations by optimizing a proposed contrastive loss. In addition, Maximum Mean Discrepancy (MMD) is utilized to directly match features between source and target samples for better global alignment. Experiments on several benchmark datasets demonstrate that CoSCAoutperforms state-of-the-art approaches for unsupervised domain adaptation by producing more discriminative features.
Original language | English (US) |
---|---|
Title of host publication | Computer Vision – ACCV 2020 - 15th Asian Conference on Computer Vision, 2020, Revised Selected Papers |
Editors | Hiroshi Ishikawa, Cheng-Lin Liu, Tomas Pajdla, Jianbo Shi |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 268-283 |
Number of pages | 16 |
ISBN (Print) | 9783030695378 |
DOIs | |
State | Published - 2021 |
Event | 15th Asian Conference on Computer Vision, ACCV 2020 - Virtual, Online Duration: Nov 30 2020 → Dec 4 2020 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 12625 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 15th Asian Conference on Computer Vision, ACCV 2020 |
---|---|
City | Virtual, Online |
Period | 11/30/20 → 12/4/20 |
Bibliographical note
Publisher Copyright:© 2021, Springer Nature Switzerland AG.
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science