Continuous shearlet frames and resolution of the wavefront set

Philipp Grohs

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

In recent years directional multiscale transformations like the curvelet- or shearlet transformation have gained considerable attention. The reason for this is that these transforms are-unlike more traditional transforms like wavelets-able to efficiently handle data with features along edges. The main result in Kutyniok and Labate (Trans. Am. Math. Soc. 361:2719-2754, 2009) confirming this property for shearlets is due to Kutyniok and Labate where it is shown that for very special functions ψ with frequency support in a compact conical wegde the decay rate of the shearlet coefficients of a tempered distribution f with respect to the shearlet ψ can resolve the wavefront set of f. We demonstrate that the same result can be verified under much weaker assumptions on ψ, namely to possess sufficiently many anisotropic vanishing moments. We also show how to build frames for L2(ℝ2)from any such function. To prove our statements we develop a new approach based on an adaption of the Radon transform to the shearlet structure. © 2010 Springer-Verlag.
Original languageEnglish (US)
Pages (from-to)393-426
Number of pages34
JournalMonatshefte für Mathematik
Volume164
Issue number4
DOIs
StatePublished - Dec 4 2010
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The research for this paper has been carried out while the author was working at theCenter for Geometric Modeling and Scientific Visualization at KAUST, Saudi Arabia. We thank Hans-GeorgFeichtinger for several useful comments.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Continuous shearlet frames and resolution of the wavefront set'. Together they form a unique fingerprint.

Cite this