TY - JOUR
T1 - Contact-Induced Nucleation in High-Performance Bottom-Contact Organic Thin Film Transistors Manufactured by Large-Area Compatible Solution Processing
AU - Niazi, Muhammad Rizwan
AU - Li, Ruipeng
AU - Abdelsamie, Maged
AU - Zhao, Kui
AU - Anjum, Dalaver H.
AU - Payne, Marcia M.
AU - Anthony, John
AU - Smilgies, Detlef-M.
AU - Amassian, Aram
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2015/9/30
Y1 - 2015/9/30
N2 - Scalable manufacturing of small-molecule organic thin film transistors (OTFTs) with performance approaching single crystals requires extraordinary control over microstructures and morphologies of organic semiconductors (OSCs). Here, contact-induced nucleation in the context of small-molecule OSCs and OSC:polymer blends prepared by blade coating, a printing process capable of mimicking large area batch and roll-to-roll manufacturing, is investigated. Using polarized optical microscopy, microbeam grazing incidence wide angle X-ray scattering, and energy-filtered transmission electron microscopy, it is revealed that previous design rules drawn from spin coating of OSCs and contact-induced nucleation may have to be revisited in the context of blade coating. It is shown that blade coating achieves texture purity in case of 2,8-difluoro-5,11-bis(triethylsilylethynyl) anthradithiophene (diF-TES-ADT), irrespective of whether the contact is chemically treated with a halogenated self-assembled monolayer (SAM) or not, in contrast to spin coating which requires an SAM. Here, it is demonstrated that OSC-contact interactions increase the nucleation density and can disrupt the vertical stratification in polymer:OSC blends with great detrimental effects on carrier transport. Using these lessons, we demonstrate bottom-contact bottom-gate OTFTs without chemical surface modification achieving hole mobilities of 4.6 and 3.6 cm2 V-1 s-1, using 6,13-bis(triisopropylsilylethynyl)pentacene and diF-TES-ADT, respectively, blended with an insulating polymer. Contact-induced nucleation, normally a desirable effect when spin-coating organic semiconductors (OSC), is shown to disrupt the crystallization of large OSC domains and to alter the vertical stratification of otherwise high-performance polymer:OSC blends.
AB - Scalable manufacturing of small-molecule organic thin film transistors (OTFTs) with performance approaching single crystals requires extraordinary control over microstructures and morphologies of organic semiconductors (OSCs). Here, contact-induced nucleation in the context of small-molecule OSCs and OSC:polymer blends prepared by blade coating, a printing process capable of mimicking large area batch and roll-to-roll manufacturing, is investigated. Using polarized optical microscopy, microbeam grazing incidence wide angle X-ray scattering, and energy-filtered transmission electron microscopy, it is revealed that previous design rules drawn from spin coating of OSCs and contact-induced nucleation may have to be revisited in the context of blade coating. It is shown that blade coating achieves texture purity in case of 2,8-difluoro-5,11-bis(triethylsilylethynyl) anthradithiophene (diF-TES-ADT), irrespective of whether the contact is chemically treated with a halogenated self-assembled monolayer (SAM) or not, in contrast to spin coating which requires an SAM. Here, it is demonstrated that OSC-contact interactions increase the nucleation density and can disrupt the vertical stratification in polymer:OSC blends with great detrimental effects on carrier transport. Using these lessons, we demonstrate bottom-contact bottom-gate OTFTs without chemical surface modification achieving hole mobilities of 4.6 and 3.6 cm2 V-1 s-1, using 6,13-bis(triisopropylsilylethynyl)pentacene and diF-TES-ADT, respectively, blended with an insulating polymer. Contact-induced nucleation, normally a desirable effect when spin-coating organic semiconductors (OSC), is shown to disrupt the crystallization of large OSC domains and to alter the vertical stratification of otherwise high-performance polymer:OSC blends.
UR - http://hdl.handle.net/10754/594311
UR - http://doi.wiley.com/10.1002/adfm.201502428
UR - http://www.scopus.com/inward/record.url?scp=84963701833&partnerID=8YFLogxK
U2 - 10.1002/adfm.201502428
DO - 10.1002/adfm.201502428
M3 - Article
SN - 1616-301X
VL - 26
SP - 2371
EP - 2378
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 14
ER -