TY - JOUR
T1 - Conformational inversion-topomerization mechanism of ethylcyclohexyl isomers and its role in combustion kinetics
AU - Bian, Huiting
AU - Wang, Zhandong
AU - Sun, Jinhua
AU - Zhang, Feng
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: National Natural Science Foundation of China[21303174, 51376174, 51376170]
PY - 2016/7/26
Y1 - 2016/7/26
N2 - With the "strain-free" cyclic structure, cyclohexane and alkyl cyclohexanes (and their radicals) have various conformers (e.g. chair, boat, and twist etc.) by pseudorotation of the alkyl ring. Noting that different conformers will undergo different types of H-migration reactions, the mechanism of conformational change may impact the distribution of cyclohexyl and the branched cyclohexyl radical isomers during cyclohexane and alkyl cyclohexanes combustion. Consequently, it will influence the formation of subsequent decomposition products. In this work, the conformational inversion-topomerization mechanism and H-migration reactions for six ethylcyclohexyl radical isomers were systematically studied by ab initio calculations and the transition state theory. The updated sub-mechanism of these conformational changes is incorporated into an ethylcyclohexane pyrolysis model. By comparing the simulated results of the "complete" model including the sub-mechanism of conformational changes and the simplified model ignoring these processes, the effect of inversion-topomerization mechanism on the relative concentrations of various ethylcyclohexyl radicals and the formation of subsequent decomposition products were revealed. © 2016.
AB - With the "strain-free" cyclic structure, cyclohexane and alkyl cyclohexanes (and their radicals) have various conformers (e.g. chair, boat, and twist etc.) by pseudorotation of the alkyl ring. Noting that different conformers will undergo different types of H-migration reactions, the mechanism of conformational change may impact the distribution of cyclohexyl and the branched cyclohexyl radical isomers during cyclohexane and alkyl cyclohexanes combustion. Consequently, it will influence the formation of subsequent decomposition products. In this work, the conformational inversion-topomerization mechanism and H-migration reactions for six ethylcyclohexyl radical isomers were systematically studied by ab initio calculations and the transition state theory. The updated sub-mechanism of these conformational changes is incorporated into an ethylcyclohexane pyrolysis model. By comparing the simulated results of the "complete" model including the sub-mechanism of conformational changes and the simplified model ignoring these processes, the effect of inversion-topomerization mechanism on the relative concentrations of various ethylcyclohexyl radicals and the formation of subsequent decomposition products were revealed. © 2016.
UR - http://hdl.handle.net/10754/621735
UR - https://linkinghub.elsevier.com/retrieve/pii/S1540748916303078
UR - http://www.scopus.com/inward/record.url?scp=84979071543&partnerID=8YFLogxK
U2 - 10.1016/j.proci.2016.07.049
DO - 10.1016/j.proci.2016.07.049
M3 - Article
SN - 1540-7489
VL - 36
SP - 237
EP - 244
JO - Proceedings of the Combustion Institute
JF - Proceedings of the Combustion Institute
IS - 1
ER -