TY - GEN
T1 - Conformal slit mapping and its applications to brain surface parameterization
AU - Wang, Yalin
AU - Gu, Xianfeng
AU - Chan, Tony F.
AU - Thompson, Paul M.
AU - Yau, Shing Tung
PY - 2008
Y1 - 2008
N2 - We propose a method that computes a conformal mapping from a multiply connected mesh to the so-called slit domain, which consists of a canonical rectangle or disk in which 3D curved landmarks on the original surfaces are mapped to concentric or parallel lines in the slit domain. In this paper, we studied its application to brain surface parameterization. After cutting along some landmark curve features on surface models of the cerebral cortex, we obtain multiple connected domains. By computing exact harmonic one-forms, closed harmonic one-forms, and holomorphic one-forms, we are able to build a circular slit mapping that conformally maps the surface to an annulus with some concentric arcs and a rectangle with some slits. The whole algorithm is based on solving linear systems so it is very stable. In the slit domain parameterization results, the feature curves are either mapped to straight lines or concentric arcs. This representation is convenient for anatomical visualization, and may assist statistical comparisons of anatomy, surface-based registration and signal processing. Preliminary experimental results parameterizing various brain anatomical surfaces are presented.
AB - We propose a method that computes a conformal mapping from a multiply connected mesh to the so-called slit domain, which consists of a canonical rectangle or disk in which 3D curved landmarks on the original surfaces are mapped to concentric or parallel lines in the slit domain. In this paper, we studied its application to brain surface parameterization. After cutting along some landmark curve features on surface models of the cerebral cortex, we obtain multiple connected domains. By computing exact harmonic one-forms, closed harmonic one-forms, and holomorphic one-forms, we are able to build a circular slit mapping that conformally maps the surface to an annulus with some concentric arcs and a rectangle with some slits. The whole algorithm is based on solving linear systems so it is very stable. In the slit domain parameterization results, the feature curves are either mapped to straight lines or concentric arcs. This representation is convenient for anatomical visualization, and may assist statistical comparisons of anatomy, surface-based registration and signal processing. Preliminary experimental results parameterizing various brain anatomical surfaces are presented.
UR - http://www.scopus.com/inward/record.url?scp=84883847021&partnerID=8YFLogxK
U2 - 10.1007/978-3-540-85988-8_70
DO - 10.1007/978-3-540-85988-8_70
M3 - Conference contribution
C2 - 18979794
AN - SCOPUS:84883847021
SN - 354085987X
SN - 9783540859871
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 585
EP - 593
BT - Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008 - 11th International Conference, Proceedings
T2 - 11th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2008
Y2 - 6 September 2008 through 10 September 2008
ER -