Confinement effects on the crystalline features of poly(9,9-dioctylfluorene)

Jaime Martin, Alberto D. Scaccabarozzi, Aurora Nogales, Ruipeng Li, Detlef-M. Smilgies, Natalie Stingelin

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Typical device architectures in polymer-based optoelectronic devices, such as field effect transistors organic light emitting diodes and photovoltaic cells include sub-100 nm semiconducting polymer thin-film active layers, whose microstructure is likely to be subject to finite-size effects. The aim of this study was to investigate effect of the two-dimensional spatial confinement on the internal structure of the semiconducting polymer poly(9,9-dioctylfluorene) (PFO). PFO melts were confined inside the cylindrical nanopores of anodic aluminium oxide (AAO) templates and crystallized via two crystallization strategies, namely, in the presence or in the absence of a surface bulk reservoir located at the template surface. We show that highly textured semiconducting nanowires with tuneable crystal orientation can be thus produced. The results presented here demonstrate the simple fabrication and crystal engineering of ordered arrays of PFO nanowires; a system with potential applications in devices where anisotropic optical properties are required, such as polarized electroluminescence, waveguiding, optical switching and lasing.
Original languageEnglish (US)
Pages (from-to)650-660
Number of pages11
JournalEuropean Polymer Journal
Volume81
DOIs
StatePublished - Jan 18 2016
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: Jaime Martín acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant, agreement No 654682.The work has been partially supported under a KAUST Global Collaborative Research Academic Excellence Alliance (AEA) grant. This work is based upon research conducted at the Cornell High Energy Synchrotron Source (CHESS) which is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF award DMR-1332208.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Confinement effects on the crystalline features of poly(9,9-dioctylfluorene)'. Together they form a unique fingerprint.

Cite this