Concentration-Mediated Band Gap Reduction of Bi2MoO6 Photoanodes Prepared by Bi3+ Cation Insertions into Anodized MoO3 Thin Films: Structural, Optical, and Photoelectrochemical Properties

Shi Nee Lou*, Rose Amal, Jason Scott, Yun Hau Ng

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

A secondary cation insertion technique to fabricate ternary Bi2MoO6 thin films with reduced optical band gaps and shallow valence bands by the controllable insertion of Bi3+ cations into anodized MoO3 thin films has been established. Near-complete conversion of the MoO3 thin film to a low-temperature-phase γ(L)-Bi2MoO6 thin film was achieved when the MoO3 thin films were subject to hydrothermal treatment in a low Bi(NO3)3·5H2O solution concentration. In contrast, a bilayered Bi2MoO6/MoO3 thin film photoelectrode comprising predominantly a high-temperature-phase γ(H)-Bi2MoO6 oxide-electrolyte interface top region and a MoO3 oxide-collector interface bottom region was formed when a high Bi(NO3)3·5H2O solution concentration was utilized. UV-vis spectroscopy shows both the γ(L)-Bi2MoO6 (Eg = 2.7 eV) and γ(H)-Bi2MoO6 (Eg = 3.05 eV) thin films exhibit smaller band gaps than MoO3 (Eg = 3.4 eV). For γ(L)-Bi2MoO6, the reduction in optical band gap was attributed to the formation of a higher-lying O 2p valence band maximum while, for the γ(H)-Bi2MoO6 thin film, hybridization of the Bi 6s orbitals with the O 2p valence orbitals lowers the potential of the valence band maximum, leading to the reduced band gap. Overall, the Bi2MoO6 thin films with the highest γ(L)-Bi2MoO6 concentration exhibited the highest photocurrent density. The photocurrent enhancement can be attributed to two main reasons: first, the trilayer Bi2MoO6/MoO3 heterostructure obtained from the direct thin film assembly enables a smooth percolation of photoexcited charges from the surface generation sites to the charge collection sites at the Mo substrate, minimizing charge recombination losses; second, the MoO6 octahedra-coordinated γ(L)-Bi2MoO6 possesses a wide conduction band enabling fast separation and migration of delocalized charges. The secondary cation insertion technique has potential as a universal method to prepare complex oxides with narrow band gaps and shallow valence bands from insertion-type oxides for solar energy applications.

Original languageEnglish (US)
Pages (from-to)3955-3964
Number of pages10
JournalACS Applied Energy Materials
Volume1
Issue number8
DOIs
StatePublished - Aug 27 2018

Bibliographical note

Publisher Copyright:
© Copyright 2018 American Chemical Society.

Keywords

  • BiMoO
  • MoO
  • photocatalysis
  • photoelectrochemical water splitting
  • solar energy conversion
  • thin film

ASJC Scopus subject areas

  • Chemical Engineering (miscellaneous)
  • Energy Engineering and Power Technology
  • Electrochemistry
  • Materials Chemistry
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Concentration-Mediated Band Gap Reduction of Bi2MoO6 Photoanodes Prepared by Bi3+ Cation Insertions into Anodized MoO3 Thin Films: Structural, Optical, and Photoelectrochemical Properties'. Together they form a unique fingerprint.

Cite this