Computational Design of Lightweight Trusses

Caigui Jiang, Chengcheng Tang, Hans Peter Seidel, Renjie Chen, Peter Wonka

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Trusses are load-carrying light-weight structures consisting of bars connected at joints ubiquitously applied in a variety of engineering scenarios. Designing optimal trusses that satisfy functional specifications with a minimal amount of material has interested both theoreticians and practitioners for more than a century. In this paper, we introduce two main ideas to improve upon the state of the art. First, we formulate an alternating linear programming problem for geometry optimization. Second, we introduce two sets of complementary topological operations, including a novel subdivision scheme for global topology refinement inspired by Michell's famed theoretical study. Based on these two ideas, we build an efficient computational framework for the design of lightweight trusses. We show that our method achieves trusses with smaller volumes and is faster compared with recent state-of-the-art approaches.
Original languageEnglish (US)
Pages (from-to)103076
JournalCAD Computer Aided Design
Volume141
DOIs
StatePublished - Jul 8 2021

Bibliographical note

KAUST Repository Item: Exported on 2021-08-10
Acknowledgements: We thank the anonymous reviewers for their insightful comments and suggestions for improving the paper. This research was supported by KAUST baseline funding, the National Natural Science Foundation of China (62072422), the NSF of Anhui Province of China (2008085MF195) and the Zhejiang Lab (2019NB0AB03).

ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design
  • Industrial and Manufacturing Engineering
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Computational Design of Lightweight Trusses'. Together they form a unique fingerprint.

Cite this