Abstract
Selection of an efficient model parametrization (model order, delay, etc.) has crucial importance in parametric system identification. It navigates a trade-off between representation capabilities of the model (structural bias) and effects of over-parametrization (variance increase of the estimates). There exists many approaches to this widely studied problem in terms of statistical regularization methods and information criteria. In this paper, an alternative ℓ 1 regularization scheme is proposed for estimation of sparse linear-regression models based on recent results in compressive sensing. It is shown that the proposed scheme provides consistent estimation of sparse models in terms of the so-called oracle property, it is computationally attractive for large-scale over-parameterized models and it is applicable in case of small data sets, i.e., underdetermined estimation problems. The performance of the approach w.r.t. other regularization schemes is demonstrated in an extensive Monte Carlo study. © 2011 IEEE.
Original language | English (US) |
---|---|
Title of host publication | IEEE Conference on Decision and Control and European Control Conference |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Pages | 783-790 |
Number of pages | 8 |
ISBN (Print) | 9781612848013 |
DOIs | |
State | Published - Dec 2011 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): 025478
Acknowledgements: Supported by NWO (grant no. 680-50-0927).Supported by NSF (grant no. ECCS-0925337) and OOF991-KAUST US LIMITED (award no. 025478).Supported by NSF (grant no. CNS-0931748).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.