Complexity Reduction of Multiphase Flows in Heterogeneous Porous Media

Mehdi Ghommem, Eduardo Gildin, Mohammadreza Ghasemi

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

In this paper, we apply mode decomposition and interpolatory projection methods to speed up simulations of two-phase flows in heterogeneous porous media. We propose intrusive and nonintrusive model-reduction approaches that enable a significant reduction in the size of the subsurface flow problem while capturing the behavior of the fully resolved solutions. In one approach, we use the dynamic mode decomposition. This approach does not require any modification of the reservoir simulation code but rather post-processes a set of global snapshots to identify the dynamically relevant structures associated with the flow behavior. In the second approach, we project the governing equations of the velocity and the pressure fields on the subspace spanned by their proper-orthogonal-decomposition modes. Furthermore, we use the discrete empirical interpolation method to approximate the mobility-related term in the global-system assembly and then reduce the online computational cost and make it independent of the fine grid. To show the effectiveness and usefulness of the aforementioned approaches, we consider the SPE-10 benchmark permeability field, and present a numerical example in two-phase flow. One can efficiently use the proposed model-reduction methods in the context of uncertainty quantification and production optimization.
Original languageEnglish (US)
Pages (from-to)144-151
Number of pages8
JournalSPE Journal
Volume21
Issue number01
DOIs
StatePublished - Feb 18 2016

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

Fingerprint

Dive into the research topics of 'Complexity Reduction of Multiphase Flows in Heterogeneous Porous Media'. Together they form a unique fingerprint.

Cite this