Competition of two highly specialized and efficient acetoclastic electroactive bacteria for acetate in biofilm anode of microbial electrolysis cell

Veerraghavulu Sapireddy, Krishna Katuri, Muhammad Ali, Pascal Saikaly

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Maintaining functional stability of microbial electrolysis cell (MEC) treating wastewater depends on maintaining functional redundancy of efficient electroactive bacteria (EAB) on the anode biofilm. Therefore, investigating whether efficient EAB competing for the same resources (electron donor and acceptor) co-exist at the anode biofilm is key for the successful application of MEC for wastewater treatment. Here, we compare the electrochemical and kinetic properties of two efficient acetoclastic EAB, Geobacter sulfurreducens (GS) and Desulfuromonas acetexigens (DA), grown as monoculture in MECs fed with acetate. Additionally, we monitor the evolution of DA and GS in co-culture MECs fed with acetate or domestic wastewater using fluorescent in situ hybridization. The apparent Monod kinetic parameters reveal that DA possesses higher jmax (10.7 ± 0.4 A/m2) and lower KS, app (2 ± 0.15 mM) compared to GS biofilms (jmax: 9.6 ± 0.2 A/m2 and KS, app: 2.9 ± 0.2 mM). Further, more donor electrons are diverted to the anode for respiration in DA compared to GS. In acetate-fed co-culture MECs, DA (98% abundance) outcompete GS for anode-dependent growth. In contrast, both EAB co-exist (DA: 55 ± 2%; GS: 24 ± 1.1%) in wastewater-fed co-culture MECs despite the advantage of DA over GS based on kinetic parameters alone. The co-existence of efficient acetoclastic EAB with high current density in MECs fed with wastewater is significant in the context of functional redundancy to maintain stable performance. Our findings also provide insight to future studies on bioaugmentation of wastewater-fed MECs with efficient EAB to enhance performance.
Original languageEnglish (US)
Journalnpj Biofilms and Microbiomes
Volume7
Issue number1
DOIs
StatePublished - May 31 2021

Bibliographical note

KAUST Repository Item: Exported on 2021-11-21
Acknowledged KAUST grant number(s): FCC/1/1971-33-01
Acknowledgements: This work was funded by Center Competitive Funding Program (FCC/1/1971-33-01) to Pascal E. Saikaly, from King Abdullah University of Science and Technology (KAUST).

Fingerprint

Dive into the research topics of 'Competition of two highly specialized and efficient acetoclastic electroactive bacteria for acetate in biofilm anode of microbial electrolysis cell'. Together they form a unique fingerprint.

Cite this