Abstract
© 2014 Elsevier B.V. All rights reserved. One-leg multistep methods have some advantage over linear multistep methods with respect to storage of the past results. In this paper boundedness and monotonicity properties with arbitrary (semi-)norms or convex functionals are analyzed for such multistep methods. The maximal stepsize coefficient for boundedness and monotonicity of a one-leg method is the same as for the associated linear multistep method when arbitrary starting values are considered. It will be shown, however, that combinations of one-leg methods and Runge-Kutta starting procedures may give very different stepsize coefficients for monotonicity than the linear multistep methods with the same starting procedures. Detailed results are presented for explicit two-step methods.
Original language | English (US) |
---|---|
Pages (from-to) | 159-172 |
Number of pages | 14 |
Journal | Journal of Computational and Applied Mathematics |
Volume | 279 |
DOIs | |
State | Published - May 2015 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): FIC/2010/05
Acknowledgements: The work of A. Mozartova has been supported by a grant from the Netherlands Organization for Scientific Research NWO. The work of I. Savostianov and W. Hundsdorfer for this publication has been supported by Award No. FIC/2010/05 from the King Abdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.