Abstract
Ferroelectric tunnel junctions (FTJs) are ideal resistance-switching devices due to their deterministic behavior and operation at low voltages. However, FTJs have remained mostly as a scientific curiosity due to three critical issues: lack of rectification in their current-voltage characteristic, small tunneling electroresistance (TER) effect, and absence of a straightforward lithography-based device fabrication method that would allow for their mass production. Co-planar FTJs that are fabricated using wafer-scale adhesion lithography technique are demonstrated, and a bi-stable rectifying behavior with colossal TER approaching 106% at room temperature is exhibited. The FTJs are based on poly(vinylidenefluoride-co-trifluoroethylene) [P(VDF-TrFE)], and employ asymmetric co-planar metallic electrodes separated by
Original language | English (US) |
---|---|
Pages (from-to) | 1901091 |
Journal | Advanced Electronic Materials |
DOIs | |
State | Published - Dec 19 2019 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: M.K. and K.A. acknowledge the financial support of the Max-Planck Institute for Polymer Research and Alexander von Humboldt Foundation (Germany) through the Sofja Kovalevskaja Award, the technical support from H.J. Gutmann. A.S., K.L., E.Y., H.F., D.D., A.B., and T.D.A. acknowledge the King Abdullah University of Science and Technology (KAUST) for financial support. The authors thank Prof. P. W.M. Blom for fruitful discussion