COHERENT NOISE SUPPRESSION VIA A SELF-SUPERVISED DEEP LEARNING SCHEME

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Coherent noise attenuation is an essential step in seismic data processing to improve data quality and signal-to-noise ratio. The use of deep learning based approaches for noise suppression has grown throughout the last five years due to neural networks strength in pattern recognition tasks and their low computation cost, i.e. fast application during the inference stage. A limitation of the majority of such procedures is their requirement for noisy-clean pairs of data for training. Here, we propose the use of self-supervised procedure, namely, Structured Noise2Void, which has no such requirements. Through the inclusion of a noise mask, the coherency of noise is suppressed by randomising the noise, allowing the network to learn how to predict only the signal component of a sample's value. Numerical experiments on synthetic and field seismic data demonstrate that our method can effectively attenuate trace-wise coherent noise. In the synthetic example, noise was injected into ten random traces, which showed no notable indication of their previously noisy state after denoising. In the field data, some locations already exhibited trace-wise coherent noise. After application of the trained network, the noise on these traces was drastically reduced resulting in a notable continuation in the seismic wave's first arrival.

Original languageEnglish (US)
Title of host publication83rd EAGE Conference and Exhibition 2022
PublisherEuropean Association of Geoscientists and Engineers, EAGE
Pages1418-1422
Number of pages5
ISBN (Electronic)9781713859314
StatePublished - 2022
Event83rd EAGE Conference and Exhibition 2022 - Madrid, Virtual, Spain
Duration: Jun 6 2022Jun 9 2022

Publication series

Name83rd EAGE Conference and Exhibition 2022
Volume2

Conference

Conference83rd EAGE Conference and Exhibition 2022
Country/TerritorySpain
CityMadrid, Virtual
Period06/6/2206/9/22

Bibliographical note

Publisher Copyright:
Copyright© (2022) by the European Association of Geoscientists & Engineers (EAGE). All rights reserved.

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics

Fingerprint

Dive into the research topics of 'COHERENT NOISE SUPPRESSION VIA A SELF-SUPERVISED DEEP LEARNING SCHEME'. Together they form a unique fingerprint.

Cite this