Class-Agnostic Segmentation Loss and Its Application to Salient Object Detection and Segmentation

Angira Sharma, Naeemullah Khan, Muhammad Mubashar, Ganesh Sundaramoorthi, Philip Torr

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

In this paper we present a novel loss function, called class-agnostic segmentation (CAS) loss. With CAS loss the class descriptors are learned during training of the network. We don't require to define the label of a class a-priori, rather the CAS loss clusters regions with similar appearance together in a weakly-supervised manner. Furthermore, we show that the CAS loss function is sparse, bounded, and robust to class-imbalance. We first apply our CAS loss function with fully-convolutional ResNet101 and DeepLab-v3 architectures to the binary segmentation problem of salient object detection. We investigate the performance against the state-of-the-art methods in two settings of low and high-fidelity training data on seven salient object detection datasets. For low-fidelity training data (incorrect class label) class-agnostic segmentation loss outperforms the state-of-the-art methods on salient object detection datasets by staggering margins of around 50%. For high-fidelity training data (correct class labels) class-agnostic segmentation models perform as good as the state-of-the-art approaches while beating the state-of-the-art methods on most datasets. In order to show the utility of the loss function across different domains we then also test on general segmentation dataset, where class-agnostic segmentation loss outperforms competing losses by huge margins.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1621-1630
Number of pages10
ISBN (Electronic)9781665401913
DOIs
StatePublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021 - Virtual, Online, Canada
Duration: Oct 11 2021Oct 17 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2021-October
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021
Country/TerritoryCanada
CityVirtual, Online
Period10/11/2110/17/21

Bibliographical note

Publisher Copyright:
© 2021 IEEE.

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Class-Agnostic Segmentation Loss and Its Application to Salient Object Detection and Segmentation'. Together they form a unique fingerprint.

Cite this