Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential

M. Timothy Rabanus-Wallace, Bernd Hackauf, Martin Mascher, Thomas Lux, Thomas Wicker, Heidrun Gundlach, Mariana Baez, Andreas Houben, Klaus F.X. Mayer, Liangliang Guo, Jesse Poland, Curtis J. Pozniak, Sean Walkowiak, Joanna Melonek, Coraline R. Praz, Mona Schreiber, Hikmet Budak, Matthias Heuberger, Burkhard Steuernagel, Brande WulffAndreas Börner, Brook Byrns, Jana Čížková, D. Brian Fowler, Allan Fritz, Axel Himmelbach, Gemy Kaithakottil, Jens Keilwagen, Beat Keller, David Konkin, Jamie Larsen, Qiang Li, Beata Myśków, Sudharsan Padmarasu, Nidhi Rawat, Uğur Sesiz, Sezgi Biyiklioglu-Kaya, Andy Sharpe, Hana Šimková, Ian Small, David Swarbreck, Helena Toegelová, Natalia Tsvetkova, Anatoly V. Voylokov, Jan Vrána, Eva Bauer, Hanna Bolibok-Bragoszewska, Jaroslav Doležel, Anthony Hall, Jizeng Jia, Viktor Korzun, André Laroche, Xue Feng Ma, Frank Ordon, Hakan Özkan, Monika Rakoczy-Trojanowska, Uwe Scholz, Alan H. Schulman, Dörthe Siekmann, Stefan Stojałowski, Vijay K. Tiwari, Manuel Spannagl, Nils Stein

Research output: Contribution to journalArticlepeer-review

104 Scopus citations

Abstract

Rye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of this resource with a broad range of investigations. We present findings on cultivated rye’s incomplete genetic isolation from wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control systems for hybrid breeding and the yield benefits of rye–wheat introgressions.
Original languageEnglish (US)
Pages (from-to)564-573
Number of pages10
JournalNature Genetics
Volume53
Issue number4
DOIs
StatePublished - Apr 1 2021
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2022-09-13

Fingerprint

Dive into the research topics of 'Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential'. Together they form a unique fingerprint.

Cite this