Chemical hole doping into large-area transition metal dichalcogenide monolayers using boron-based oxidant

Hirofumi Matsuoka, Kaito Kanahashi, Naoki Tanaka, Yoshiaki Shoji, Lain-Jong Li, Jiang Pu, Hiroshi Ito, Hiromichi Ohta, Takanori Fukushima, Taishi Takenobu

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Hole carrier doping into single-crystalline transition metal dichalcogenide (TMDC) films can be achieved with various chemical reagents. However, large-area polycrystalline TMDC monolayers produced by a chemical vapor deposition (CVD) growth method have yet to be chemically doped. Here, we report that a salt of a two-coordinate boron cation, Mes2B+ (Mes: 2,4,6-trimethylphenyl group), with a chemically stable tetrakis(pentafluorophenyl)borate anion, [(C6F5)4B]−, can serve as an efficient hole-doping reagent for large-area CVD-grown tungsten diselenide (WSe2) films. Upon doping, the sheet resistance of large-area polycrystalline WSe2 monolayers decreased from 90 GΩ/sq to 3.2 kΩ/sq.
Original languageEnglish (US)
Pages (from-to)02CB15
JournalJapanese Journal of Applied Physics
Issue number2S2
StatePublished - Jan 18 2018

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: T.T. was partially supported by Grants-in-Aid from MEXT (JP26102012 "π-System Figuration", JP17H01069, JP16K13618, JP15K21721, and JP25000003). K.K. and J.P. acknowledge the Leading Graduate Program in Science and Engineering, Waseda University from the Ministry of Education, Culture, Sports, Science and Technology (MEST) of Japan. T.F. was supported by Grant-in-Aid for Scientific Research on Innovative Areas (JP26102008 "π-System Figuration") and "Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials" from MEXT. Y.S. was supported by the Asahi Glass Foundation. This work was also supported in part by the Network Joint Research Center for Materials and Devices.


Dive into the research topics of 'Chemical hole doping into large-area transition metal dichalcogenide monolayers using boron-based oxidant'. Together they form a unique fingerprint.

Cite this