Charge separation in polyflourene composites with internal donor/acceptor heterojunctions

R. Pacios, D. D.C. Bradley

Research output: Chapter in Book/Report/Conference proceedingConference contribution

47 Scopus citations


The photosensitivity of semiconducting polymers can be enhanced by blending donor (D) and acceptor (A) polymers to optimise photoinduced charge separation. The photoluminescence of two such polymers, an acceptor poly(9,9-dioctylfluorene-co-benzothidiadiozole) (BT) and a donor poly(9,9-dioctylfluorene-co-bis-N,N′-(4-butylphenyl)-bis-N,N′-phenyl benzidine) (BFB) are quenched in their mutual blend indicative of rapid and efficient separation of photogenerated electron-hole pairs with electrons in the BT acceptor and holes in the BFB donor. In order to be useful for photovoltaic applications, the excitons have to reach a D/A interface before they decay radiatively or non-radiatively. Whereas charge separation seems to be efficient in these polymer networks, charge transport still remains a limiting factor due to the imperfect network structures and low charge carrier mobilities. This charge transport can be improved by controlling the morphology of the blend. Although the initial power conversion efficiency (PCE) was low for our composites (0.12%), the blends show promising photovoltaic characteristics; the efficiency is 220 times higher than for diodes made with pure BFB. We report work aimed at improving the efficiency via control of the blend morphology and the use of polymeric anodes. © 2002 Elsevier Science B.V. All rights reserved.
Original languageEnglish (US)
Title of host publicationSynthetic Metals
StatePublished - Mar 26 2002
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2019-11-27


Dive into the research topics of 'Charge separation in polyflourene composites with internal donor/acceptor heterojunctions'. Together they form a unique fingerprint.

Cite this