Abstract
Carotenoid cleavage products - apocarotenoids - include biologically active compounds, such as hormones, pigments and volatiles. Their biosynthesis is initiated by the oxidative cleavage of C-C double bonds in carotenoid backbones, leading to aldehydes and/or ketones. This step is catalyzed by carotenoid oxygenases, which constitute an ubiquitous enzyme family, including the group of plant carotenoid cleavage dioxygenases 1 (CCD1s), which mediates the formation of volatile C13 ketones, such as β-ionone, by cleaving the C9-C10 and C9′-C10′ double bonds of cyclic and acyclic carotenoids. Recently, it was reported that plant CCD1s also act on the C5-C6/C5′- C6′ double bonds of acyclic carotenes, leading to the volatile C 8 ketone 6-methyl-5-hepten-2-one. Using in vitro and in vivo assays, we show here that rice CCD1 converts lycopene into the three different volatiles, pseudoionone, 6-methyl-5-hepten-2-one, and geranial (C10), suggesting that the C7-C8/C7′-C8′ double bonds of acyclic carotenoid ends constitute a novel cleavage site for the CCD1 plant subfamily. The results were confirmed by HPLC, LC-MS and GC-MS analyses, and further substantiated by in vitro incubations with the monocyclic carotenoid 3-OH-γ-carotene and with linear synthetic substrates. Bicyclic carotenoids were cleaved, as reported for other plant CCD1s, at the C9-C10 and C9′-C10′ double bonds. Our study reveals a novel source for the widely occurring plant volatile geranial, which is the cleavage of noncyclic ends of carotenoids.
Original language | English (US) |
---|---|
Pages (from-to) | 736-747 |
Number of pages | 12 |
Journal | FEBS Journal |
Volume | 276 |
Issue number | 3 |
DOIs | |
State | Published - Feb 2009 |
Externally published | Yes |
Keywords
- Apocarotenoids
- Carotenoid cleavage
- Carotenoid dioxygenase
- Geranial
- Lycopene cleavage
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology