Abstract
We establish a link between the microscopic ordering and the charge-transport parameters for a highly crystalline polymeric organic semiconductor, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). We find that the nematic and dynamic order parameters of the conjugated backbones, as well as their separation, evolve linearly with temperature, while the side-chain dynamic order parameter and backbone paracrystallinity change abruptly upon the (also experimentally observed) melting of the side chains around 400 K. The distribution of site energies follows the behavior of the backbone paracrystallinity and can be treated as static on the time scale of a single-charge transfer reaction. On the contrary, the electronic couplings between adjacent backbones are insensitive to side-chain melting and vary on a much faster time scale. The hole mobility, calculated after time-averaging of the electronic couplings, reproduces well the value measured in a short-channel thin-film transistor. The results underline that to secure efficient charge transport in lamellar arrangements of conjugated polymers: (i) the electronic couplings should present high average values and fast dynamics, and (ii) the energetic disorder (paracrystallinity) should be small.
Original language | English (US) |
---|---|
Pages (from-to) | 1633-1640 |
Number of pages | 8 |
Journal | JOURNAL OF PHYSICAL CHEMISTRY C |
Volume | 117 |
Issue number | 4 |
DOIs | |
State | Published - Jan 31 2013 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: The work in Maim was partly supported by the DFG programs IRTG 1328 and SPP 1355, and BMBF grants MESOMERIE and MEDOS. The work at Georgia Tech was supported by the Center for Advanced Molecular Photovoltaics funded through the King Abdullah University of Science and Technology (KAUST). We are grateful to Bjorn Baumeier, Pascal Kordt, Anton Melnyk, Kostas Daoulas, Patrick Gemunden, and Mara Jochum for critical reading of the manuscript.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- General Energy
- Surfaces, Coatings and Films
- Physical and Theoretical Chemistry