Abstract
Recently, the advent of large language models (LLMs) has revolutionized generative agents. Among them, Role-Playing Conversational Agents (RPCAs) attract considerable attention due to their ability to emotionally engage users. However, the absence of a comprehensive benchmark impedes progress in this field. To bridge this gap, we introduce CharacterEval, a Chinese benchmark for comprehensive RPCA assessment, complemented by a tailored high-quality dataset. The dataset comprises 1,785 multi-turn role-playing dialogues, encompassing 11,376 examples and featuring 77 characters derived from Chinese novels and scripts. It was carefully constructed, beginning with initial dialogue extraction via GPT-4, followed by rigorous human-led quality control, and enhanced with in-depth character profiles sourced from Baidu Baike. CharacterEval employs a multifaceted evaluation approach, encompassing thirteen targeted metrics on four dimensions. To facilitate the convenient evaluation for these subjective metrics in CharacterEval, we further developed CharacterRM, a role-playing reward model based on human annotations, which has a higher correlation with human judgment compared to GPT-4. Comprehensive experiments on CharacterEval demonstrate that Chinese LLMs exhibit more promising capabilities than GPT-4 in Chinese role-playing conversation. Source code, data source, and reward model will be publicly accessible at https://github.com/morecry/CharacterEval.
Original language | English (US) |
---|---|
Title of host publication | Long Papers |
Editors | Lun-Wei Ku, Andre F. T. Martins, Vivek Srikumar |
Publisher | Association for Computational Linguistics (ACL) |
Pages | 11836-11850 |
Number of pages | 15 |
ISBN (Electronic) | 9798891760943 |
State | Published - 2024 |
Event | 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Bangkok, Thailand Duration: Aug 11 2024 → Aug 16 2024 |
Publication series
Name | Proceedings of the Annual Meeting of the Association for Computational Linguistics |
---|---|
Volume | 1 |
ISSN (Print) | 0736-587X |
Conference
Conference | 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 |
---|---|
Country/Territory | Thailand |
City | Bangkok |
Period | 08/11/24 → 08/16/24 |
Bibliographical note
Publisher Copyright:© 2024 Association for Computational Linguistics.
ASJC Scopus subject areas
- Computer Science Applications
- Linguistics and Language
- Language and Linguistics