Abstract
The design, synthesis, and characterization of a series of diketopyrrolopyrrole-based copolymers with different chalcogenophene comonomers (thiophene, selenophene, and tellurophene) for use in field-effect transistors and organic photovoltaic devices are reported. The effect of the heteroatom substitution on the optical, electrochemical, and photovoltaic properties and charge carrier mobilities of these polymers is discussed. The results indicate that by increasing the size of the chalcogen atom (S < Se < Te), polymer band gaps are narrowed mainly due to LUMO energy level stabilization. In addition, the larger heteroatomic size also increases intermolecular heteroatom-heteroatom interactions facilitating the formation of polymer aggregates leading to enhanced field-effect mobilities of 1.6 cm2/(V s). Bulk heterojunction solar cells based on the chalcogenophene polymer series blended with fullerene derivatives show good photovoltaic properties, with power conversion efficiencies ranging from 7.1-8.8%. A high photoresponse in the near-infrared (NIR) region with excellent photocurrents above 20 mA cm-2 was achieved for all polymers, making these highly efficient low band gap polymers promising candidates for use in tandem solar cells. (Graph Presented).
Original language | English (US) |
---|---|
Pages (from-to) | 1314-1321 |
Number of pages | 8 |
Journal | Journal of the American Chemical Society |
Volume | 137 |
Issue number | 3 |
DOIs | |
State | Published - Jan 14 2015 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: This work was carried out primarily with funding and supports from the X10D Project (EC 287818) and The Leventis Foundation with support from EPSRC (EP/G037515/1 and EP/L016702/1). M.K. acknowledges support from Nano-matcell Project (EU 308997), and M.P. acknowledges support from the Artesun Project (EU 604397).
ASJC Scopus subject areas
- Biochemistry
- Colloid and Surface Chemistry
- General Chemistry
- Catalysis