Chain mobility in polymer systems: On the borderline between solid and melt. 2. Crystal size influence in phase transition and sintering of ultrahigh molecular weight polyethylene via the mobile hexagonal phase

S. Rastogi, L. Kurelec, P. J. Lemstra

Research output: Contribution to journalArticlepeer-review

100 Scopus citations

Abstract

Polymorphism is a well-established phenomenon in crystalline materials and is important for pharmaceutical and polymeric materials. In our study concerning the processability of polymers, we came across an unusual observation related to polymorphism induced by pressure. The experimental observation is that polyethylene crystals transform from the stable orthorhombic crystal into a transient hexagonal phase. The occurrence of a transient hexagonal phase is shown to be dependent on the polymer crystal size; smaller crystals transform into the transient hexagonal phase at temperatures and pressures much below the thermodynamic critical point Qo, which is located at P = 3.6 kbar and T = 230 °C. The crystal size dependence in the phase transition was investigated by in situ X-ray studies in the unirradiated and irradiated solution-crystallized films. Since the chain mobility is rather high in the hexagonal phase, sintering has been attempted via this transient phase using ultrahigh molecular weight polyethylene (UHMW-PE) as a model system. UHMW-PE is an intractable polymer due to its high molar mass but possesses excellent abrasion resistance properties. For this reason it is used as an inlay in demanding applications such as artificial hip and knee joints. The service life of UHMW-PE in these artificial joints, however, is limited due to the poor processing characteristics notably during sintering, and often a second operation is needed to replace the UHMW-PE interface. Sintering via the transient hexagonal phase could provide a solution for this important problem which concerns an increasing number of people.
Original languageEnglish (US)
Pages (from-to)5022-5031
Number of pages10
JournalMacromolecules
Volume31
Issue number15
DOIs
StatePublished - Jul 28 1998

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2021-02-16

Fingerprint

Dive into the research topics of 'Chain mobility in polymer systems: On the borderline between solid and melt. 2. Crystal size influence in phase transition and sintering of ultrahigh molecular weight polyethylene via the mobile hexagonal phase'. Together they form a unique fingerprint.

Cite this