Abstract
Mesoporous H-ZSM-5-carbon composites, prepared via tetrapropylammonium hydroxide (TPAOH) post treatment of H-ZSM-5 followed by deposition of pyrolytic carbon, have been used as the support for the preparation of Co-based Fischer-Tropsch catalysts. The resulting catalysts display an improved performance during Fischer-Tropsch synthesis (FTS), with higher activity, higher selectivity towards C5-C9 (gasoline range) hydrocarbons and lower selectivity towards C1 (and C2) than Co/mesoH-ZSM5 (without pyrolytic carbon). This is due to the weaker metal-support interaction caused by the deposited carbon (as revealed by XPS) leading to a higher reducibility of the Co species. Further, the partial deactivation of the Brønsted acid sites by pyrolytic carbon deposition, as was observed by NH3-TPD, allows the modification of the zeolite acidity. Both the olefin to paraffin (O/P) and the isoparaffin to normal paraffin (I/N) ratios decrease with the increase in the carbon content, opening the door to further tune the catalytic performance in multifunctional FTS operations.
Original language | English (US) |
---|---|
Pages (from-to) | 2633-2646 |
Number of pages | 14 |
Journal | Catalysis Science and Technology |
Volume | 6 |
Issue number | 8 |
DOIs | |
State | Published - Apr 21 2016 |
Externally published | Yes |
Bibliographical note
Funding Information:The authors gratefully acknowledge the support of the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER (Project CTQ2012-36408) and the Smart Mix Program of the Netherlands Ministry of Economic Affairs and the Netherlands Ministry of Education, Culture and Science. M. J. V. R. gratefully thanks the Spanish Ministry of Economy and Competitiveness (MINECO) for a research stay fellowship (EEBB-I-14-08633).
Publisher Copyright:
© The Royal Society of Chemistry 2016.
ASJC Scopus subject areas
- Catalysis