Carbon sequestration by Australian tidal marshes

Peter I. Macreadie, Q. R. Ollivier, J. J. Kelleway, O. Serrano, P. E. Carnell, C. J. Ewers Lewis, T. B. Atwood, J. Sanderman, J. Baldock, R. M. Connolly, Carlos M. Duarte, P. S. Lavery, A. Steven, C. E. Lovelock

Research output: Contribution to journalArticlepeer-review

96 Scopus citations


Australia's tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia's tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha-1 (range 14-963 Mg OC ha-1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha-1 yr-1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia's 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr-1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.
Original languageEnglish (US)
JournalScientific Reports
Issue number1
StatePublished - Mar 10 2017

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: P.M. acknowledges the support of an Australian Research Council (ARC) Discovery Early Career Researcher Award DE130101084 and an Australian Research Council (ARC) Linkage Grant (LP160100242). This project was also supported by the CSIRO Flagship Marine & Coastal Carbon Biogeochemical Cluster and the Ocean and Atmosphere Flagship. O.S. was supported by an ARC DECRA DE170101524.


Dive into the research topics of 'Carbon sequestration by Australian tidal marshes'. Together they form a unique fingerprint.

Cite this