TY - GEN
T1 - Broadband computer-generated holography (CGH)-based Bessel beam generation
AU - Javed, Isma
AU - Asad, Muhammad
AU - Rind, Yousaf Murtaza
AU - Satti, Azhar Javed
AU - Zubair, Muhammad
AU - Mehmood, Muhammad Qasim
N1 - Generated from Scopus record by KAUST IRTS on 2023-09-20
PY - 2023/1/1
Y1 - 2023/1/1
N2 - In the recent era of development, metasurfaces have provided a new way to develop ultra-compact multifunctional optical devices by overcoming the bottlenecks of traditional bulky optics. Due to phase singularities, metasurface-enabled Bessel beams of higher orders can carry orbital angular momentum (OAM) which makes them a potential candidate for high-capacity communication and data transmission systems. Herein this manuscript, Bessel beams of distinct order are designed using the technology of computer-generated holography for the visible spectrum. For full-range phase coverage, geometric phase modulation is applied along with a spin decoupling strategy to incorporate multifunctionality. The designed metasurface can transform the incident circular polarization component into its orthogonal one and can produce different-order beams. For proof of the broadband optical operation, the response of the designed metasurface is demonstrated at three wavelengths i.e., 488nm, 532nm, and 633nm. Moreover, a highly indexed lossless material zinc selenide (ZnSe) is introduced for the visible spectrum for a highly efficient optical response. The proposed design strategy can be extensively applied in optical communication, photography, optical data storage, and tomography techniques.
AB - In the recent era of development, metasurfaces have provided a new way to develop ultra-compact multifunctional optical devices by overcoming the bottlenecks of traditional bulky optics. Due to phase singularities, metasurface-enabled Bessel beams of higher orders can carry orbital angular momentum (OAM) which makes them a potential candidate for high-capacity communication and data transmission systems. Herein this manuscript, Bessel beams of distinct order are designed using the technology of computer-generated holography for the visible spectrum. For full-range phase coverage, geometric phase modulation is applied along with a spin decoupling strategy to incorporate multifunctionality. The designed metasurface can transform the incident circular polarization component into its orthogonal one and can produce different-order beams. For proof of the broadband optical operation, the response of the designed metasurface is demonstrated at three wavelengths i.e., 488nm, 532nm, and 633nm. Moreover, a highly indexed lossless material zinc selenide (ZnSe) is introduced for the visible spectrum for a highly efficient optical response. The proposed design strategy can be extensively applied in optical communication, photography, optical data storage, and tomography techniques.
UR - https://ieeexplore.ieee.org/document/10099083/
UR - http://www.scopus.com/inward/record.url?scp=85158936041&partnerID=8YFLogxK
U2 - 10.1109/iCoMET57998.2023.10099083
DO - 10.1109/iCoMET57998.2023.10099083
M3 - Conference contribution
SN - 9798350335316
BT - 2023 4th International Conference on Computing, Mathematics and Engineering Technologies: Sustainable Technologies for Socio-Economic Development, iCoMET 2023
PB - Institute of Electrical and Electronics Engineers Inc.
ER -