TY - JOUR
T1 - Blockchain in IoT Systems: End-to-End Delay Evaluation
AU - Alaslani, Maha S.
AU - Nawab, Faisal
AU - Shihada, Basem
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2019
Y1 - 2019
N2 - Providing security and privacy for the Internet of Things (IoT) applications while ensuring a minimum level of performance requirements is an open research challenge. Recently, Blockchain offers a promising solution to overcome the current peer-to-peer networks limitations. In the context of IoT, Byzantine Fault Tolerance-based (BFT) consensus protocols are used due to the energy efficiency advantage over other consensus protocols. The consensus process in BFT is done by electing a group of authenticated nodes. The elected nodes will be responsible for ensuring the data blocks’ integrity through defining a total order on the blocks and preventing the concurrently appended blocks from containing conflicting data. However, the Blockchain Consensus Layer contributes the most performance overhead. Therefore, a performance study needs to be conducted especially for the IoT applications that are subject to maximum delay constraints. In this paper, we obtain a mathematical expression to calculate the end-to-end delay with different network configurations, i.e., number of network hops and replica machines. We validate the proposed analytical model with simulation. Our results show that the unique characteristics of IoT traffic have an undeniable impact on the end-to-end delay requirement.
AB - Providing security and privacy for the Internet of Things (IoT) applications while ensuring a minimum level of performance requirements is an open research challenge. Recently, Blockchain offers a promising solution to overcome the current peer-to-peer networks limitations. In the context of IoT, Byzantine Fault Tolerance-based (BFT) consensus protocols are used due to the energy efficiency advantage over other consensus protocols. The consensus process in BFT is done by electing a group of authenticated nodes. The elected nodes will be responsible for ensuring the data blocks’ integrity through defining a total order on the blocks and preventing the concurrently appended blocks from containing conflicting data. However, the Blockchain Consensus Layer contributes the most performance overhead. Therefore, a performance study needs to be conducted especially for the IoT applications that are subject to maximum delay constraints. In this paper, we obtain a mathematical expression to calculate the end-to-end delay with different network configurations, i.e., number of network hops and replica machines. We validate the proposed analytical model with simulation. Our results show that the unique characteristics of IoT traffic have an undeniable impact on the end-to-end delay requirement.
UR - http://hdl.handle.net/10754/655903
UR - https://ieeexplore.ieee.org/document/8716500/
UR - http://www.scopus.com/inward/record.url?scp=85073418499&partnerID=8YFLogxK
U2 - 10.1109/JIOT.2019.2917226
DO - 10.1109/JIOT.2019.2917226
M3 - Article
SN - 2327-4662
VL - 6
SP - 8332
EP - 8344
JO - IEEE Internet of Things Journal
JF - IEEE Internet of Things Journal
IS - 5
ER -