Abstract
Rapidly-Exploring Random Trees (RRTs) have been successful at finding feasible solutions for many types of problems. With motion planning becoming more computationally demanding, we turn to parallel motion planning for efficient solutions. Existing work on distributed RRTs has been limited by the overhead that global communication requires. A recent approach, Radial RRT, demonstrated a scalable algorithm that subdivides the space into regions to increase the computation locality. However, if an obstacle completely blocks RRT growth in a region, the planning space is not covered and is thus not probabilistically complete. We present a new algorithm, Blind RRT, which ignores obstacles during initial growth to efficiently explore the entire space. Because obstacles are ignored, free components of the tree become disconnected and fragmented. Blind RRT merges parts of the tree that have become disconnected from the root. We show how this algorithm can be applied to the Radial RRT framework allowing both scalability and effectiveness in motion planning. This method is a probabilistically complete approach to parallel RRTs. We show that our method not only scales but also overcomes the motion planning limitations that Radial RRT has in a series of difficult motion planning tasks. © 2013 IEEE.
Original language | English (US) |
---|---|
Title of host publication | 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Pages | 1758-1765 |
Number of pages | 8 |
ISBN (Print) | 9781467363587 |
DOIs | |
State | Published - Nov 2013 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): KUSC1-016-04
Acknowledgements: This research supported in part by NSF awards CNS-0551685, CCF-0833199, CCF-0830753, IIS-0917266, IIS-0916053, EFRI-1240483, RI-1217991, by NSF/DNDO award 2008-DN-077-ARI018-02, by NIH NCIR25 CA090301-11, by DOE awards DE-FC52-08NA28616, DE-AC02-06CH11357, B575363, B575366, by THECB NHARP award 000512-0097-2009, by Samsung, Chevron, IBM, Intel, Oracle/Sun and by Award KUSC1-016-04, made by King Abdullah University of Science and Technology(KAUST). This research used resources of the National Energy ResearchScientific Computing Center, which is supported by the Office of Science ofthe U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.