Biotemplated Palladium Catalysts Can Be Stabilized on Different Support Materials

Matthew D. Yates, Bruce E. Logan

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Sustainably biotemplated palladium catalysts generated on different carbon-based support materials are examined for durability under electrochemical (oxidative) and mechanical-stress conditions. Biotemplated catalysts on carbon paper under both stresses retain 95% (at 0.6V) of the initial catalytic activity as opposed to 70% for carbon cloth and 60% for graphite. Graphite electrodes retain 95% of initial catalytic activity under a single stress. Using electrodeposited polyaniline (PANI) and polydimethylsiloxane binder increases the current density after the stress tests by 22%, as opposed to a 30% decrease for Nafion. PANI-coated electrodes retain more activity than carbon-paper electrodes under elevated mechanical (94 versus 70%) or increased oxidative (175 versus 62%) stress. Biotemplated catalytic electrodes may be useful alternatives to synthetically produce catalysts for some electrochemical applications. Sustainable electrode fabrication: The biotemplated synthesis of catalytic porous electrodes is a sustainable process and, according to the results of durability tests under electrochemical and mechanical stress, these electrodes (e.g. the Pd/carbon paper electrode shown in the picture) are durable enough to replace catalytic electrodes based on synthetic materials in certain applications.
Original languageEnglish (US)
Pages (from-to)1867-1873
Number of pages7
JournalChemElectroChem
Volume1
Issue number11
DOIs
StatePublished - Jul 30 2014
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-I1-003-13
Acknowledgements: The authors would like to acknowledge John Cantolina in the Huck Institutes of Life Sciences for his assistance with the SEM. This research was supported by an award KUS-I1-003-13 from the King Abdullah University of Science and Technology (KAUST) and by an award DGE-1255832 to M.D.Y. by the National Science Foundation (NSF) Graduate Student Fellowship Program.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Biotemplated Palladium Catalysts Can Be Stabilized on Different Support Materials'. Together they form a unique fingerprint.

Cite this