Biological applications of fluorescence lifetime imaging beyond microscopy

Walter J. Akers, Mikhail Y. Berezin, Hyeran Lee, Kevin Guo, Adah Almutairi, Jean M.J. Fréchet, Georg M. Fischer, Ewald Daltrozzo, Samuel Achilefu

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    9 Scopus citations


    Fluorescence lifetime is a relatively new contrast mechanism for optical imaging in living subjects that relies on intrinsic properties of fluorophores rather than concentration dependent intensity. Drawing upon the success of fluorescence lifetime imaging microscopy (FLIM) for investigation of protein-protein interactions and intracellular physiology, in vivo fluorescence lifetime imaging (FLI) promises to dramatically increase the utility of fluorescencebased imaging in preclinical and clinical applications. Intrinsic fluorescence lifetime measurements in living tissues can distinguish pathologies such as cancer from healthy tissue. Unfortunately, intrinsic FLT contrast is limited to superficial measurements. Conventional intensity-based agents have been reported for measuring these phenomena in vitro, but translation into living animals is difficult due to optical properties of tissues. For this reason, contrast agents that can be detected in the near infrared (NIR) wavelengths are being developed by our lab and others to enhance the capabilities of this modality. FLT is less affected by concentration and thus is better for detecting small changes in physiology, as long as sufficient fluorescence signal can be measured. FLT can also improve localization of signals for improved deep tissue imaging. Examples of the utility of exogenous contrast agents will be discussed, including applications in monitoring physiologic functions, controlled drug release and cancer biology. Instrumentation for FLI will also be discussed, including planar and diffuse optical imaging in time and frequency domains. Future applications will also be discussed that are being developed in this exciting field that complement other optical modalities.

    Original languageEnglish (US)
    Title of host publicationReporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications II
    StatePublished - 2010
    EventReporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications II - San Francisco, CA, United States
    Duration: Jan 25 2010Jan 27 2010

    Publication series

    NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
    ISSN (Print)1605-7422


    OtherReporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications II
    Country/TerritoryUnited States
    CitySan Francisco, CA


    • Molecular
    • Near-infrared
    • Optical
    • Preclinical
    • Time-resolved

    ASJC Scopus subject areas

    • Electronic, Optical and Magnetic Materials
    • Atomic and Molecular Physics, and Optics
    • Radiology Nuclear Medicine and imaging
    • Biomaterials


    Dive into the research topics of 'Biological applications of fluorescence lifetime imaging beyond microscopy'. Together they form a unique fingerprint.

    Cite this