TY - JOUR

T1 - Biased Online Parameter Inference for State-Space Models

AU - Moral, Pierre Del

AU - Jasra, Ajay

AU - Zhou, Yan

N1 - Generated from Scopus record by KAUST IRTS on 2019-11-20

PY - 2017/9/1

Y1 - 2017/9/1

N2 - We consider Bayesian online static parameter estimation for state-space models. This is a very important problem, but is very computationally challenging as the state-of-the art methods that are exact, often have a computational cost that grows with the time parameter; perhaps the most successful algorithm is that of SM C2 (Chopin et al., J R Stat Soc B 75: 397–426 2013). We present a version of the SM C2 algorithm which has computational cost that does not grow with the time parameter. In addition, under assumptions, the algorithm is shown to provide consistent estimates of expectations w.r.t. the posterior. However, the cost to achieve this consistency can be exponential in the dimension of the parameter space; if this exponential cost is avoided, typically the algorithm is biased. The bias is investigated from a theoretical perspective and, under assumptions, we find that the bias does not accumulate as the time parameter grows. The algorithm is implemented on several Bayesian statistical models.

AB - We consider Bayesian online static parameter estimation for state-space models. This is a very important problem, but is very computationally challenging as the state-of-the art methods that are exact, often have a computational cost that grows with the time parameter; perhaps the most successful algorithm is that of SM C2 (Chopin et al., J R Stat Soc B 75: 397–426 2013). We present a version of the SM C2 algorithm which has computational cost that does not grow with the time parameter. In addition, under assumptions, the algorithm is shown to provide consistent estimates of expectations w.r.t. the posterior. However, the cost to achieve this consistency can be exponential in the dimension of the parameter space; if this exponential cost is avoided, typically the algorithm is biased. The bias is investigated from a theoretical perspective and, under assumptions, we find that the bias does not accumulate as the time parameter grows. The algorithm is implemented on several Bayesian statistical models.

UR - http://link.springer.com/10.1007/s11009-016-9511-x

UR - http://www.scopus.com/inward/record.url?scp=84982098032&partnerID=8YFLogxK

U2 - 10.1007/s11009-016-9511-x

DO - 10.1007/s11009-016-9511-x

M3 - Article

SN - 1573-7713

VL - 19

JO - Methodology and Computing in Applied Probability

JF - Methodology and Computing in Applied Probability

IS - 3

ER -