Benzene destruction in claus process by sulfur dioxide: A reaction kinetics study

Sourab Sinha, Abhijeet Dhayal Raj, Ahmed S. Alshoaibi, Saeed M. Alhassan, Suk Ho Chung

Research output: Contribution to journalArticlepeer-review

19 Scopus citations


Benzene, toluene and xylene (BTX) are present as contaminants in the H 2S gas stream entering a Claus furnace. The exhaust gases from the furnace enter catalytic units, where BTX form soot particles. These particles clog and deactivate the catalysts. A solution to this problem is BTX oxidation before the gases enter catalyst beds. This work presents a theoretical investigation on benzene oxidation by SO2. Density functional theory is used to develop a detailed mechanism for phenyl radical -SO2 interactions. The mechanism begins with SO2 addition to phenyl radical after overcoming an energy barrier of 6.4 kJ/mol. This addition reaction is highly exothermic, where a reaction energy of 182 kJ/mol is released. The most favorable pathway involves O-S bond breakage, leading to the release of SO. A remarkable similarity between the pathways for phenyl radical oxidation by O2 and its oxidation by SO2 is observed. The reaction rate constants are also evaluated to facilitate process simulations. © 2014 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)10608-10617
Number of pages10
JournalIndustrial & Engineering Chemistry Research
Issue number26
StatePublished - Jun 20 2014

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work has been financially supported by the Gas Processing and Materials Science Research Centre, The Petroleum Institute, UAE.

ASJC Scopus subject areas

  • General Chemical Engineering
  • General Chemistry
  • Industrial and Manufacturing Engineering


Dive into the research topics of 'Benzene destruction in claus process by sulfur dioxide: A reaction kinetics study'. Together they form a unique fingerprint.

Cite this