Bayesian site selection for fast Gaussian process regression

Arash Pourhabib, Faming Liang, Yu Ding

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Gaussian Process (GP) regression is a popular method in the field of machine learning and computer experiment designs; however, its ability to handle large data sets is hindered by the computational difficulty in inverting a large covariance matrix. Likelihood approximation methods were developed as a fast GP approximation, thereby reducing the computation cost of GP regression by utilizing a much smaller set of unobserved latent variables called pseudo points. This article reports a further improvement to the likelihood approximation methods by simultaneously deciding both the number and locations of the pseudo points. The proposed approach is a Bayesian site selection method where both the number and locations of the pseudo inputs are parameters in the model, and the Bayesian model is solved using a reversible jump Markov chain Monte Carlo technique. Through a number of simulated and real data sets, it is demonstrated that with appropriate priors chosen, the Bayesian site selection method can produce a good balance between computation time and prediction accuracy: it is fast enough to handle large data sets that a full GP is unable to handle, and it improves, quite often remarkably, the prediction accuracy, compared with the existing likelihood approximations. © 2014 Taylor and Francis Group, LLC.
Original languageEnglish (US)
Pages (from-to)543-555
Number of pages13
JournalIIE Transactions
Volume46
Issue number5
DOIs
StatePublished - Feb 5 2014
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-C1-016-04
Acknowledgements: Arash Pourhabib and Yu Ding were supported in part by NSF grants CMMI-0926803 and CMMI-1000088; Yu Ding was also supported by the NSF grant CMMI-0726939; Faming Liang's research was partially supported by NSF grants CMMI-0926803, DMS-1007457, and DMS-1106494 and an award (KUS-C1-016-04) made by King Abdullah University of Science and Technology.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Bayesian site selection for fast Gaussian process regression'. Together they form a unique fingerprint.

Cite this