Bayesian inference of spatially varying Manning’s n coefficients in an idealized coastal ocean model using a generalized Karhunen-Loève expansion and polynomial chaos

Adil Siripatana, Olivier Le Maitre, Omar Knio, Clint Dawson, Ibrahim Hoteit

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Bayesian inference with coordinate transformations and polynomial chaos for a Gaussian process with a parametrized prior covariance model was introduced in Sraj et al. (Comput Methods Appl Mech Eng 298:205–228, 2016a) to enable and infer uncertainties in a parameterized prior field. The feasibility of the method was successfully demonstrated on a simple transient diffusion equation. In this work, we adopt a similar approach to infer a spatially varying Manning’s n field in a coastal ocean model. The idea is to view the prior on the Manning’s n field as a stochastic Gaussian field, expressed through a covariance function with uncertain hyper-parameters. A generalized Karhunen-Loève (KL) expansion, which incorporates the construction of a reference basis of spatial modes and a coordinate transformation, is then applied to the prior field. To improve the computational efficiency of the method proposed in Sraj et al. (Comput Methods Appl Mech Eng 298:205–228, 2016a), we propose to use two polynomial chaos expansions to (i) approximate the coordinate transformation and (ii) build a cheap surrogate of the large-scale advanced circulation (ADCIRC) numerical model. These two surrogates are used to accelerate the Bayesian inference process using a Markov chain Monte Carlo algorithm. Water elevation data are inverted within an observing system simulation experiment framework, based on a realistic ADCIRC model, to infer the KL coordinates and hyper-parameters of a reference 2D Manning’s field. Our results demonstrate the efficiency of the proposed approach and suggest that including the hyper-parameter uncertainties greatly enhances the inferred Manning’s n field, compared with using a covariance with fixed hyper-parameters.
Original languageEnglish (US)
JournalOcean Dynamics
DOIs
StatePublished - Jul 1 2020

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

Fingerprint

Dive into the research topics of 'Bayesian inference of spatially varying Manning’s n coefficients in an idealized coastal ocean model using a generalized Karhunen-Loève expansion and polynomial chaos'. Together they form a unique fingerprint.

Cite this