Band edge n-MOSFETs with high-k/metal gate stacks scaled to EOT=0.9nm with excellent carrier mobility and high temperature stability

P. D. Kirsch, M. A. Quevedo-Lopez, S. A. Krishnan, C. Krug, Husam Niman Alshareef, C. S. Park, R. Harris, N. Moumen, A. Neugroschel, G. Bersuker, B. H. Lee, J. G. Wang, G. Pant, B. E. Gnade, M. J. Kim, R. M. Wallace, J. S. Jur, D. J. Lichtenwalner, A. I. Kingon, R. Jammy

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

18 Scopus citations

Abstract

We demonstrate, for the first time, a HfLaSiON/metal gate stack that concurrently achieves the following: low threshold voltage (V T=0.33V), low equivalent oxide thickness (EOT=0.91nm) (T inv=1.3nm) and 83% SiO2 mobility. Key enablers of this result are 1) La doped HfSiON for n-FET VT tuning 2) HfO 2:SiO2 alloy ratio with 10% SiO2 suppressing crystallization up to 1070°C, 3) interlayer SiO2 (IL) to reduced bias temperature instability (BTI) and 4) plasma nitridation (N*)/post nitridation anneal (PNA) sequence for EOT scaling. This work advances high-k/band edge metal gate (MG) efforts by showing scalability of HfLaSiON to EOT=0.91nm without mobility or BTI trade-off, while matching the VT of a SiO2/n-PolySi control.

Original languageEnglish (US)
Title of host publication2006 International Electron Devices Meeting Technical Digest, IEDM
DOIs
StatePublished - Dec 1 2006
Event2006 International Electron Devices Meeting, IEDM - San Francisco, CA, United States
Duration: Dec 10 2006Dec 13 2006

Publication series

NameTechnical Digest - International Electron Devices Meeting, IEDM
ISSN (Print)0163-1918

Other

Other2006 International Electron Devices Meeting, IEDM
Country/TerritoryUnited States
CitySan Francisco, CA
Period12/10/0612/13/06

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Band edge n-MOSFETs with high-k/metal gate stacks scaled to EOT=0.9nm with excellent carrier mobility and high temperature stability'. Together they form a unique fingerprint.

Cite this