Azimuth moveout correction for transversely isotropic media

Tariq Alkhalifah*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The azimuth moveout (AMO) operator in homogeneous transversely isotropic media with a vertical symmetry axis (VTI), as in isotropic media, has an overall skewed saddle shape. However, the AMO operator in anisotropic media is complicated; it includes, among other things, triplications at low angles. Even in weaker anisotropies, with the anisotropy parameter η = 0.1 (10% anisotropy), the AMO operator is considerably different from the isotropic operator, although free of triplications. The structure of the operator in VTI media (positive η) is stretched (has a wider aperture) compared with operators in isotropic media, with the amount of stretch being dependent on the strength of anisotropy. If the medium is both vertically inhomogeneous, i.e. the vertical velocity is a function of depth (v(z)), and anisotropic, which is a common combination in practical problems, the shape of the operator again differs from that for isotropic media. However, the difference in the AMO operator between the homogeneous and the v(z) cases, even for anisotropic media, is small. Stated simply, anisotropy influences the shape and aperture of the AMO operator far more than vertical inhomogeneity does.

Original languageEnglish (US)
Pages (from-to)39-48
Number of pages10
JournalGeophysical Prospecting
Volume52
Issue number1
DOIs
StatePublished - Jan 2004
Externally publishedYes

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics

Fingerprint

Dive into the research topics of 'Azimuth moveout correction for transversely isotropic media'. Together they form a unique fingerprint.

Cite this