Auxiliary space preconditioners for SIP-DG discretizations of H(curl)-elliptic problems with discontinuous coefficients

Blanca Ayuso de Dios, Ralf Hiptmair, Cecilia Pagliantini

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We propose a family of preconditioners for linear systems of equations arising from a piecewise polynomial symmetric interior penalty discontinuous Galerkin discretization of H(curl,ω)-elliptic boundary value problems on conforming meshes. The design and analysis of the proposed preconditioners rely on the auxiliary space method (ASM) employing an auxiliary space of H(curl,ω)-conforming finite element functions together with a relaxation technique (local smoothing). On simplicial meshes, the proposed preconditioner enjoys asymptotic optimality with respect to mesh refinement. It is also robust with respect to jumps in the coefficients ? and b in the second-and zeroth-order parts of the operator, respectively, except when the problem changes from curl-dominated to reaction-dominated and vice versa. On quadrilateral/hexahedral meshes some of the proposed ASM solvers may fail, since the related H(curl,ω)-conforming finite element space does not provide a spectrally accurate discretization. Extensive numerical experiments are included to verify the theory and assess the performance of the preconditioners.
Original languageEnglish (US)
Pages (from-to)646-686
Number of pages41
JournalIMA Journal of Numerical Analysis
Volume37
Issue number2
DOIs
StatePublished - Jun 2 2016
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2022-06-03
Acknowledged KAUST grant number(s): BAS/1/1636-01-01
Acknowledgements: King Abdullah University of Science and Technology (KAUST) grant BAS/1/1636-01-01 and Pocket ID 1000000193 to B.A. Swiss National Science Foundation Grant No. 146355 to R.H. and C.P.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

ASJC Scopus subject areas

  • Computational Mathematics
  • Applied Mathematics
  • Mathematics(all)

Fingerprint

Dive into the research topics of 'Auxiliary space preconditioners for SIP-DG discretizations of H(curl)-elliptic problems with discontinuous coefficients'. Together they form a unique fingerprint.

Cite this