Autonomous Workflow for Multimodal Fine-Grained Training Assistants Towards Mixed Reality

Jiahuan Pei, Irene Viola, Haochen Huang, Junxiao Wang, Moonisa Ahsan, Fanghua Ye, Yiming Jiang, Yao Sai, Di Wang, Zhumin Chen, Pengjie Ren*, Pablo Cesar

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Autonomous artificial intelligence (AI) agents have emerged as promising protocols for automatically understanding the language-based environment, particularly with the exponential development of large language models (LLMs). However, a fine-grained, comprehensive understanding of multimodal environments remains under-explored. This work designs an autonomous workflow tailored for integrating AI agents seamlessly into mixed reality (MR) applications for fine-grained training. We present a demonstration of a multimodal fine-grained training assistant for LEGO brick assembly in a pilot MR environment. Specifically, we design a cerebral language agent that integrates LLMs with memory, planning, and interaction with MR tools and a vision-language agent, enabling agents to decide their actions based on past experiences. Furthermore, we introduce LEGO-MRTA, a multimodal fine-grained assembly dialogue dataset synthesized automatically in the workflow served by a commercial LLM. This dataset comprises multimodal instruction manuals, conversations, MR responses, and vision question answering. Last, we present several prevailing open-resource LLMs as benchmarks, assessing their performance with and without fine-tuning on the proposed dataset. We anticipate that the broader impact of this workflow will advance the development of smarter assistants for seamless user interaction in MR environments, fostering research in both AI and HCI communities.

Original languageEnglish (US)
Title of host publicationThe 62nd Annual Meeting of the Association for Computational Linguistics
Subtitle of host publicationFindings of the Association for Computational Linguistics, ACL 2024
EditorsLun-Wei Ku, Andre Martins, Vivek Srikumar
PublisherAssociation for Computational Linguistics (ACL)
Pages4051-4066
Number of pages16
ISBN (Electronic)9798891760998
DOIs
StatePublished - 2024
EventFindings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Hybrid, Bangkok, Thailand
Duration: Aug 11 2024Aug 16 2024

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
ISSN (Print)0736-587X

Conference

ConferenceFindings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Country/TerritoryThailand
CityHybrid, Bangkok
Period08/11/2408/16/24

Bibliographical note

Publisher Copyright:
© 2024 Association for Computational Linguistics.

ASJC Scopus subject areas

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'Autonomous Workflow for Multimodal Fine-Grained Training Assistants Towards Mixed Reality'. Together they form a unique fingerprint.

Cite this