Automatic landmark tracking and its application to the optimization of brain conformal mapping

Lok Ming Lui*, Yalin Wang, Tony F. Chan, Paul M. Thompson

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

16 Scopus citations

Abstract

Anatomical features on cortical surfaces are usually represented by landmark curves, called sulci/gyri curves. These landmark curves are important information for neuroscientists to study brain diseases and to match different cortical surfaces. Manual labelling of these landmark curves is time-consuming, especially when there is a large set of data. In this paper, we proposed to trace the landmark curves on cortical surfaces automatically based on the principal directions. Suppose we are given the global conformal parametrization of a cortical surface, By fixing two endpoints, the anchor points, we propose to trace the landmark curves iteratively on the spherical/rectangular parameter domain along the principal direction. Consequently, the landmark curves can be mapped onto the cortical surface. To speed up the iterative scheme, a good initial guess of the landmark curve is necessary. We proposed a method to get a good initialization by extracting the high curvature region on the cortical surface using the Chan-Vese segmentation. This involves solving a PDE on the manifold using our global conformal parametrization technique. Experimental results show that the landmark curves detected by our algorithm closely resemble to those manually labelled curves. As an application, we used these automatically labelled landmark curves to build average cortical surfaces with an optimized brain conformal mapping method. Experimental results show our method can help automatically matching brain cortical surfaces.

Original languageEnglish (US)
Title of host publicationProceedings - 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006
Pages1784-1789
Number of pages6
DOIs
StatePublished - 2006
Externally publishedYes
Event2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006 - New York, NY, United States
Duration: Jun 17 2006Jun 22 2006

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2
ISSN (Print)1063-6919

Other

Other2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006
Country/TerritoryUnited States
CityNew York, NY
Period06/17/0606/22/06

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Automatic landmark tracking and its application to the optimization of brain conformal mapping'. Together they form a unique fingerprint.

Cite this