TY - GEN
T1 - Automatic landmark tracking and its application to the optimization of brain conformal mapping
AU - Lui, Lok Ming
AU - Wang, Yalin
AU - Chan, Tony F.
AU - Thompson, Paul M.
PY - 2006
Y1 - 2006
N2 - Anatomical features on cortical surfaces are usually represented by landmark curves, called sulci/gyri curves. These landmark curves are important information for neuroscientists to study brain diseases and to match different cortical surfaces. Manual labelling of these landmark curves is time-consuming, especially when there is a large set of data. In this paper, we proposed to trace the landmark curves on cortical surfaces automatically based on the principal directions. Suppose we are given the global conformal parametrization of a cortical surface, By fixing two endpoints, the anchor points, we propose to trace the landmark curves iteratively on the spherical/rectangular parameter domain along the principal direction. Consequently, the landmark curves can be mapped onto the cortical surface. To speed up the iterative scheme, a good initial guess of the landmark curve is necessary. We proposed a method to get a good initialization by extracting the high curvature region on the cortical surface using the Chan-Vese segmentation. This involves solving a PDE on the manifold using our global conformal parametrization technique. Experimental results show that the landmark curves detected by our algorithm closely resemble to those manually labelled curves. As an application, we used these automatically labelled landmark curves to build average cortical surfaces with an optimized brain conformal mapping method. Experimental results show our method can help automatically matching brain cortical surfaces.
AB - Anatomical features on cortical surfaces are usually represented by landmark curves, called sulci/gyri curves. These landmark curves are important information for neuroscientists to study brain diseases and to match different cortical surfaces. Manual labelling of these landmark curves is time-consuming, especially when there is a large set of data. In this paper, we proposed to trace the landmark curves on cortical surfaces automatically based on the principal directions. Suppose we are given the global conformal parametrization of a cortical surface, By fixing two endpoints, the anchor points, we propose to trace the landmark curves iteratively on the spherical/rectangular parameter domain along the principal direction. Consequently, the landmark curves can be mapped onto the cortical surface. To speed up the iterative scheme, a good initial guess of the landmark curve is necessary. We proposed a method to get a good initialization by extracting the high curvature region on the cortical surface using the Chan-Vese segmentation. This involves solving a PDE on the manifold using our global conformal parametrization technique. Experimental results show that the landmark curves detected by our algorithm closely resemble to those manually labelled curves. As an application, we used these automatically labelled landmark curves to build average cortical surfaces with an optimized brain conformal mapping method. Experimental results show our method can help automatically matching brain cortical surfaces.
UR - http://www.scopus.com/inward/record.url?scp=33845563327&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2006.67
DO - 10.1109/CVPR.2006.67
M3 - Conference contribution
AN - SCOPUS:33845563327
SN - 0769525970
SN - 9780769525976
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 1784
EP - 1789
BT - Proceedings - 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006
T2 - 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006
Y2 - 17 June 2006 through 22 June 2006
ER -