Autoignition characteristics of oxygenated gasolines

Changyoul Lee, Ahfaz Ahmed, Ehson Fawad Nasir, Jihad Badra, Gautam Kalghatgi, Mani Sarathy, Henry J. Curran, Aamir Farooq

Research output: Contribution to journalArticlepeer-review

67 Scopus citations

Abstract

Gasoline anti-knock quality, defined by the research and motor octane numbers (RON and MON), is important for increasing spark ignition (SI) engine efficiency. Gasoline knock resistance can be increased using a number of blending components. For over two decades, ethanol has become a popular anti-knock blending agent with gasoline fuels due to its production from bio-derived resources. This work explores the oxidation behavior of two oxygenated certification gasoline fuels and the variation of fuel reactivity with molecular composition. Ignition delay times of Haltermann (RON = 91) and Coryton (RON = 97.5) gasolines have been measured in a high-pressure shock tube and in a rapid compression machine at three pressures of 10, 20 and 40 bar, at equivalence ratios of φ = 0.45, 0.9 and 1.8, and in the temperature range of 650–1250 K. The results indicate that the effects of fuel octane number and fuel composition on ignition characteristics are strongest in the intermediate temperature (negative temperature coefficient) region. To simulate the reactivity of these gasolines, three kinds of surrogates, consisting of three, four and eight components, are proposed and compared with the gasoline ignition delay times. It is shown that more complex surrogate mixtures are needed to emulate the reactivity of gasoline with higher octane sensitivity (S = RON–MON). Detailed kinetic analyses are performed to illustrate the dependence of gasoline ignition delay times on fuel composition and, in particular, on ethanol content.
Original languageEnglish (US)
Pages (from-to)114-128
Number of pages15
JournalCombustion and Flame
Volume186
DOIs
StatePublished - Aug 14 2017

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: Research reported in this paper was funded by Saudi Aramco under the FUELCOM program and by King Abdullah University of Science and Technology (KAUST).

Fingerprint

Dive into the research topics of 'Autoignition characteristics of oxygenated gasolines'. Together they form a unique fingerprint.

Cite this