Abstract
Co-aligning a collection of shapes to a consistent pose is a common problem in shape analysis with applications in shape matching, retrieval and visualization. We observe that resolving among some orientations is easier than others, for example, a common mistake for bicycles is to align front-to-back, while even the simplest algorithm would not erroneously pick orthogonal alignment. The key idea of our work is to analyse rotational autocorrelations of shapes to facilitate shape co-alignment. In particular, we use such an autocorrelation measure of individual shapes to decide which shape pairs might have well-matching orientations; and, if so, which configurations are likely to produce better alignments. This significantly prunes the number of alignments to be examined, and leads to an efficient, scalable algorithm that performs comparably to state-of-the-art techniques on benchmark data sets, but requires significantly fewer computations, resulting in 2-16× speed improvement in our tests. Co-aligning a collection of shapes to a consistent pose is a common problem in shape analysis with applications in shape matching, retrieval and visualization. We observe that resolving among some orientations is easier than others, for example, a common mistake for bicycles is to align front-to-back, while even the simplest algorithm would not erroneously pick orthogonal alignment. The key idea of our work is to analyse rotational autocorrelations of shapes to facilitate shape co-alignment. In particular, we use such an autocorrelation measure of individual shapes to decide which shape pairs might have well-matching orientations; and, if so, which configurations are likely to produce better alignments. This significantly prunes the number of alignments to be examined, and leads to an efficient, scalable algorithm that performs comparably to state-of-the-art techniques on benchmark data sets, but requires significantly fewer computations, resulting in 2-16x speed improvement in our tests.
Original language | English (US) |
---|---|
Pages (from-to) | 261-271 |
Number of pages | 11 |
Journal | Computer Graphics Forum |
Volume | 35 |
Issue number | 1 |
DOIs | |
State | Published - Feb 1 2016 |
Bibliographical note
Publisher Copyright:© 2015 The Eurographics Association and John Wiley & Sons Ltd.
Keywords
- digital geometry processing
- modeling
ASJC Scopus subject areas
- Computer Graphics and Computer-Aided Design