Abstract
RNA-directed DNA methylation, one of several RNA interference-mediated pathways in the nucleus, has been documented in plants and in human cells. Despite progress in identifying the DNA methyltransferases, histone-modifying enzymes and RNA interference proteins needed for RNA-directed DNA methylation, the mechanism remains incompletely understood. We screened for mutants defective in RNA-directed DNA methylation and silencing of a transgene promoter in Arabidopsis thaliana and identified three drd complementation groups. DRD1 is a SNF2-like protein required for RNA-directed de novo methylation. We report here that DRD2 and DRD3 correspond to the second-largest subunit and largest subunit, respectively, of a fourth class of DNA-dependent RNA polymerase (polymerase IV) that is unique to plants. DRD3 is a functionally diversified homolog of NRPD1a or SDE4, identified in a separate screen for mutants defective in post-transcriptional gene silencing. The identical DNA methylation patterns observed in all three drd mutants suggest that DRD proteins cooperate to create a substrate for RNA-directed de novo methylation.
Original language | English (US) |
---|---|
Pages (from-to) | 761-765 |
Number of pages | 5 |
Journal | Nature Genetics |
Volume | 37 |
Issue number | 7 |
DOIs | |
State | Published - 2005 |
Externally published | Yes |
ASJC Scopus subject areas
- Genetics