Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation

Gaurav Dutta, Gerard T. Schuster

Research output: Contribution to journalArticlepeer-review

242 Scopus citations

Abstract

Strong subsurface attenuation leads to distortion of amplitudes and phases of seismic waves propagating inside the earth. Conventional acoustic reverse time migration (RTM) and least-squares reverse time migration (LSRTM) do not account for this distortion, which can lead to defocusing of migration images in highly attenuative geologic environments. To correct for this distortion, we used a linearized inversion method, denoted as Qp-LSRTM. During the leastsquares iterations, we used a linearized viscoacoustic modeling operator for forward modeling. The adjoint equations were derived using the adjoint-state method for back propagating the residual wavefields. The merit of this approach compared with conventional RTM and LSRTM was that Qp-LSRTM compensated for the amplitude loss due to attenuation and could produce images with better balanced amplitudes and more resolution below highly attenuative layers. Numerical tests on synthetic and field data illustrated the advantages of Qp-LSRTM over RTM and LSRTM when the recorded data had strong attenuation effects. Similar to standard LSRTM, the sensitivity tests for background velocity and Qp errors revealed that the liability of this method is the requirement for smooth and accurate migration velocity and attenuation models.
Original languageEnglish (US)
Pages (from-to)S251-S262
Number of pages1
JournalGEOPHYSICS
Volume79
Issue number6
DOIs
StatePublished - Oct 1 2014

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

Fingerprint

Dive into the research topics of 'Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation'. Together they form a unique fingerprint.

Cite this