Atomic-Level Doping of Metal Clusters

Research output: Contribution to journalArticlepeer-review

296 Scopus citations


Conspectus Atomically precise noble metal (mainly silver and gold) nanoclusters are an emerging category of promising functional materials for future applications in energy, sensing, catalysis, and nanoelectronics. These nanoclusters are protected by ligands such as thiols, phosphines, and hydride and have sizes between those of atoms and plasmonic nanoparticles. In metallurgy, the properties of a pure metal are modified by the addition of other metals, which often offers augmented characteristics, making them more utilizable for real-life applications. In this Account, we discuss how the incorporation of various metal atoms into existing protected nanoclusters tunes their structure and properties. The process of incorporating metals into an existing cluster is known as doping; the product is known as a doped cluster, and the incorporated metal atom is called a dopant/foreign atom. We first present a brief historical overview of protected clusters and the need for doping and explain (with examples) the difference between an “alloy” and a “doped” cluster, which are two frequently confused terms. We then discuss several commonly observed challenges in the synthesis of doped clusters: (i) doping produces a mixture of compositions that prevents the growth of single crystals; (ii) doping with foreign atoms sometimes changes the overall composition and structure of the parent cluster; and (iii) doping beyond a certain number of foreign atoms decomposes the doped cluster. After delineating the challenges, we review a few potential synthetic methods for doped clusters: (i) the co-reduction method, (ii) the galvanic exchange method, (iii) ligand-induced conversion of bimetallic clusters to doped clusters, and (iv) intercluster reactions. As a foreign atom is able to occupy different positions within the structure of the parent cluster, we examine the structural relationship between the parent clusters and their different foreign-atom-doped clusters. We then show how doping enhances the stability, luminescence, and catalytic properties of clusters. The enhancement factor highly depends on the number and nature of the foreign atoms, which can also alter the charge state of the parent cluster. Atomic-level doping of foreign atoms in the parent cluster is confirmed by high-resolution electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry techniques and single-crystal X-ray diffraction methods. The photophysical properties of the doped clusters are investigated using both time-dependent and steady-state luminescence and optical absorption spectroscopies. After presenting an overview of atomic-level doping in metal clusters and demonstrating its importance for enriching the chemistry and photophysics of clusters and extending their applications, we conclude this Account with a brief perspective on the field’s future.
Original languageEnglish (US)
Pages (from-to)3094-3103
Number of pages10
JournalAccounts of Chemical Research
Issue number12
StatePublished - Nov 19 2018

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was supported by King Abdullah University of Science and Technology (KAUST).


Dive into the research topics of 'Atomic-Level Doping of Metal Clusters'. Together they form a unique fingerprint.

Cite this