Abstract
In this paper, we consider the problem of tracking for a discrete-time plant with unknown plant parameters; we assume knowledge of an upper bound on the plant order, and for each admissible order we assume knowledge of a compact set in which the plant parameters lie. We carry out parameter estimation of an associated auxiliary model; indeed, for each admissible dimension, we cover the set of admissible parameters by a finite number of compact and convex sets and use an original-projection-algorithm-based estimator for each set. At each point in time, we employ a switching algorithm to determine which model and parameter estimates are used in the pole-placement-based control law. We prove that this adaptive controller guarantees desirable linear-like closed-loop behavior: exponential stability, a bounded noise gain in every p-norm, a convolution bound on the effect of the exogenous inputs, as well as exponential tracking for certain classes of reference and noise signals; this linear-like behavior is leveraged to immediately show tolerance to a degree of plant time-variations and unmodelled dynamics.
Original language | English (US) |
---|---|
Journal | IEEE Transactions on Automatic Control |
DOIs | |
State | Published - 2021 |
Bibliographical note
KAUST Repository Item: Exported on 2021-01-26Acknowledgements: This research is supported by a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).