Asymptotic Analysis of a System of Algebraic Equations Arising in Dislocation Theory

Cameron L. Hall, S. Jonathan Chapman, John R. Ockendon

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

The system of algebraic equations given by σn j=0, j≠=i sgn(xi-xj )|xi-xj|a = 1, i = 1, 2, ⋯ , n, x0 = 0, appears in dislocation theory in models of dislocation pile-ups. Specifically, the case a = 1 corresponds to the simple situation where n dislocations are piled up against a locked dislocation, while the case a = 3 corresponds to n dislocation dipoles piled up against a locked dipole. We present a general analysis of systems of this type for a > 0 and n large. In the asymptotic limit n→∞, it becomes possible to replace the system of discrete equations with a continuum equation for the particle density. For 0 < a < 2, this takes the form of a singular integral equation, while for a > 2 it is a first-order differential equation. The critical case a = 2 requires special treatment, but, up to corrections of logarithmic order, it also leads to a differential equation. The continuum approximation is valid only for i neither too small nor too close to n. The boundary layers at either end of the pile-up are also analyzed, which requires matching between discrete and continuum approximations to the main problem. © 2010 Society for Industrial and Applied Mathematics.
Original languageEnglish (US)
Pages (from-to)2729-2749
Number of pages21
JournalSIAM Journal on Applied Mathematics
Volume70
Issue number7
DOIs
StatePublished - Jan 2010
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUK-C1-013-04
Acknowledgements: Received by the editors November 30, 2009; accepted for publication (in revised form) June 7, 2010; published electronically August 10, 2010. This publication is based on work supported by award KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Asymptotic Analysis of a System of Algebraic Equations Arising in Dislocation Theory'. Together they form a unique fingerprint.

Cite this