TY - JOUR
T1 - Assessment of CO2/shale interfacial tension
AU - Al-Yaseri, Ahmed
AU - Abdulelah, Hesham
AU - Yekeen, Nurudeen
AU - Ali, Muhammad
AU - Negash, Berihun Mamo
AU - Zhang, Yihuai
N1 - Generated from Scopus record by KAUST IRTS on 2023-09-21
PY - 2021/10/20
Y1 - 2021/10/20
N2 - Caprocks/CO2 interfacial tension (γsc) is an essential parameter that helps to provide insights into the interaction between CO2and caprocks. Lower values of γsc suggest stronger CO2- caprocks interaction (lower CO2capacity is inferred) and vice versa. Rocks/CO2 interfacial tension also explains why different minerals have different wettability to CO2 at the same pressure and temperature. Two caprock samples acquired from a potential CO2 storage site in New South Wales in Australia were used in this work. All the laboratory measurements were conducted at varying pressure from 5 MPa to 20 MPa and a temperature of 343 K. Our findings suggest that solid/CO2 interfacial tension (γsc) in caprocks is highly dependent on total organic carbon (TOC) percentage, pressure, and quartz content. γsc in sample-2 of higher TOC and quartz (TOC =0.11 wt%, quartz = 62%) is lower than γsc in sample-1 of lower TOC and quartz (TOC =0.081 wt%, quartz = 31%. The higher percentage of TOC and quartz increases the hydrophobic sites available in the sample, allowing stronger affinity towards CO2. Lower interfacial tension implies a stronger affinity of CO2 towards caprock surface (the high chance that CO2 will enter through caprocks and causes leakage). Therefore, it can be inferred that high TOC caprocks offer a lower CO2 trapping integrity, hence reducing their CO2 storage capacity. A remarkable relationship between solid/CO2 interfacial tension and CO2 density–which is easy to determine – at different pressures (up to 20 MPa) and 343 K temperature was also demonstrated in this work. This insight can significantly enhance Carbon Geosequestration processes' fundamental understanding.
AB - Caprocks/CO2 interfacial tension (γsc) is an essential parameter that helps to provide insights into the interaction between CO2and caprocks. Lower values of γsc suggest stronger CO2- caprocks interaction (lower CO2capacity is inferred) and vice versa. Rocks/CO2 interfacial tension also explains why different minerals have different wettability to CO2 at the same pressure and temperature. Two caprock samples acquired from a potential CO2 storage site in New South Wales in Australia were used in this work. All the laboratory measurements were conducted at varying pressure from 5 MPa to 20 MPa and a temperature of 343 K. Our findings suggest that solid/CO2 interfacial tension (γsc) in caprocks is highly dependent on total organic carbon (TOC) percentage, pressure, and quartz content. γsc in sample-2 of higher TOC and quartz (TOC =0.11 wt%, quartz = 62%) is lower than γsc in sample-1 of lower TOC and quartz (TOC =0.081 wt%, quartz = 31%. The higher percentage of TOC and quartz increases the hydrophobic sites available in the sample, allowing stronger affinity towards CO2. Lower interfacial tension implies a stronger affinity of CO2 towards caprock surface (the high chance that CO2 will enter through caprocks and causes leakage). Therefore, it can be inferred that high TOC caprocks offer a lower CO2 trapping integrity, hence reducing their CO2 storage capacity. A remarkable relationship between solid/CO2 interfacial tension and CO2 density–which is easy to determine – at different pressures (up to 20 MPa) and 343 K temperature was also demonstrated in this work. This insight can significantly enhance Carbon Geosequestration processes' fundamental understanding.
UR - https://linkinghub.elsevier.com/retrieve/pii/S0927775721009870
UR - http://www.scopus.com/inward/record.url?scp=85110244664&partnerID=8YFLogxK
U2 - 10.1016/j.colsurfa.2021.127118
DO - 10.1016/j.colsurfa.2021.127118
M3 - Article
SN - 1873-4359
VL - 627
JO - Colloids and Surfaces A: Physicochemical and Engineering Aspects
JF - Colloids and Surfaces A: Physicochemical and Engineering Aspects
ER -