ASSANet: An Anisotropic Separable Set Abstraction for Efficient Point Cloud Representation Learning

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

52 Scopus citations

Abstract

Access to 3D point cloud representations has been widely facilitated by LiDAR sensors embedded in various mobile devices. This has led to an emerging need for fast and accurate point cloud processing techniques. In this paper, we revisit and dive deeper into PointNet++, one of the most influential yet under-explored networks, and develop faster and more accurate variants of the model. We first present a novel Separable Set Abstraction (SA) module that disentangles the vanilla SA module used in PointNet++ into two separate learning stages: (1) learning channel correlation and (2) learning spatial correlation. The Separable SA module is significantly faster than the vanilla version, yet it achieves comparable performance. We then introduce a new Anisotropic Reduction function into our Separable SA module and propose an Anisotropic Separable SA (ASSA) module that substantially increases the network's accuracy. We later replace the vanilla SA modules in PointNet++ with the proposed ASSA module, and denote the modified network as ASSANet. Extensive experiments on point cloud classification, semantic segmentation, and part segmentation show that ASSANet outperforms PointNet++ and other methods, achieving much higher accuracy and faster speeds. In particular, ASSANet outperforms PointNet++ by 7.4 mIoU on S3DIS Area 5, while maintaining 1.6× faster inference speed on a single NVIDIA 2080Ti GPU. Our scaled ASSANet variant achieves 66.8 mIoU and outperforms KPConv, while being more than 54× faster.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
PublisherNeural information processing systems foundation
Pages28119-28130
Number of pages12
ISBN (Electronic)9781713845393
StatePublished - 2021
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: Dec 6 2021Dec 14 2021

Publication series

NameAdvances in Neural Information Processing Systems
Volume34
ISSN (Print)1049-5258

Conference

Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online
Period12/6/2112/14/21

Bibliographical note

Funding Information:
The authors appreciate the anonymous NeurIPS reviewers for their constructive feedback (including the revised title, the feature pattern visualization, and the additional experiments). This work was supported by the KAUST Office of Sponsored Research (OSR) through the Visual Computing Center (VCC) funding.

Publisher Copyright:
© 2021 Neural information processing systems foundation. All rights reserved.

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'ASSANet: An Anisotropic Separable Set Abstraction for Efficient Point Cloud Representation Learning'. Together they form a unique fingerprint.

Cite this