Appropriate drinking water treatment processes for organic micropollutants removal based on experimental and model studies - A multi-criteria analysis study

Sairam Sudhakaran, Sabine Lattemann, Gary L. Amy

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

The presence of organic micropollutants (OMPs), pharmaceuticals and personal care products (PPCPs) in potable water is of great environmental and public health concern. OMPs are included in the priority list of contaminants in United States EPA and European framework directives. Advanced treatment processes such as reverse osmosis, nanofiltration, ozonation and adsorption are the usual industry-recommended processes for OMPs removal, however, natural systems, e.g., riverbank filtration and constructed wetlands, are also potentially efficient options for OMPs removal. In this study, a decision support system (DSS) based on multi-criteria analysis (MCA) was created to compare processes for OMPs removal under various criteria. Multi-criteria analysis (MCA), a transparent and reliable procedure, was adopted. Models were built for both experimental and predicted percent-removals for a range of OMPs reflecting different physicochemical properties. The experimental percent-removals for several processes (riverbank filtration (RBF), ozonation, advanced oxidation, adsorption, reverse osmosis, and nanofiltration) were considered. The predicted percent-removals were taken from validated quantitative structure activity relationship (QSAR) models. Analytical methods to detect OMPs in water are very laborious, thus a modeling approach such as QSAR is an attractive option.A survey among two groups of participants including academics (PhD students and post-doctoral research associates) and industry (managers and operators) representatives was conducted to assign weights for the following criteria: treatability, costs, technical considerations, sustainability and time. The process rankings varied depending on the contaminant species and personal preferences (weights). The results indicated that RBF and oxidation were preferable over adsorption and membranes processes. The results also suggest that the use of a hybrid treatment process, e.g., combining a natural system with an advanced treatment (oxidation) process, may provide benefits for OMPs removal.The proposed DSS can be used as a screening tool for experimental planning or a feasibility study preceding the main treatment system selection and design. It can also be considered as an aid in assessing a multi-barrier approach to remove OMPs. © 2012 Elsevier B.V.
Original languageEnglish (US)
Pages (from-to)478-488
Number of pages11
JournalScience of the Total Environment
Volume442
DOIs
StatePublished - Jan 2013

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

ASJC Scopus subject areas

  • Environmental Chemistry
  • Pollution
  • Environmental Engineering
  • Waste Management and Disposal

Fingerprint

Dive into the research topics of 'Appropriate drinking water treatment processes for organic micropollutants removal based on experimental and model studies - A multi-criteria analysis study'. Together they form a unique fingerprint.

Cite this